Revisiting AES Related-Key Differential Attacks with Constraint Programming

D. Gerault\(^{(1)}\), P. Lafourcade\(^{(1)}\), \textbf{M. Minier}\(^{(2)}\), C. Solnon\(^{(3)}\)

\(^{(1)}\) - LIMOS, Université Clermont-Ferrand
\(^{(2)}\) - LORIA, Université de Lorraine
\(^{(3)}\) - LIRIS, INSA de Lyon

Journées Méthodes Formelles - 30 May 2017
Revisiting AES RKD Attacks with CP

- Differential cryptanalysis of the AES
 - First CP model for Step 1
 - Second CP model for Step 1
 - Third CP model for Step 1
 - CP model for Step 2
 - Results
 - Conclusion
AES (Advanced Encryption Standard)

Block cipher standard since 2001

- **Input:**
 - A plaintext $X = 128$ bits = 4x4 bytes
 - A key $K = 128, 192, \text{ or } 256$ bits = 4x4, 4x6, or 4x8 bytes

- **Output:** a ciphertext $E_K(X)$ such that $X = E_K^{-1}(E_K(X))$

- **Iterative process of r rounds:** $r = 10$ (12, 14) when $|K| = 128$ (192, 256)
Differential Cryptanalysis [Biham and Shamir 1991]:

Track XOR differences through the ciphering process to recover the key:

- Let $\delta X = X \oplus X'$ be an input plaintext difference
- Let $\delta Y = E_K(X) \oplus E_K(X')$ be the output difference
- The cipher is weak if $\exists \delta X$ and δY such that $Pr[\delta Y | \delta X] >> 2^{-|K|}$
 \Rightarrow Key recovery in $O(1/Pr[\delta Y | \delta X])$
Cryptanalysis of the AES Block Cipher (2/2)

Related-Key Attack [Biham 1993]: Inject differences in texts and keys

- Let $\delta X = X \oplus X'$ be an input plaintext difference
- Let $\delta K = K \oplus K'$ be an input key difference
- Let $\delta Y = E_K(X) \oplus E_{K'}(X')$ be the output difference
- The cipher is weak if $\exists \delta X, \delta K,$ and δY such that $Pr[\delta Y|\delta X, \delta K] >> 2^{-|K|}$
 \Rightarrow Key recovery in $O(1/Pr[\delta Y|\delta X, \delta K])$
Related-Key Differential of AES

Goal: Find δX, δK_0, and δY that maximizes $Pr[\delta Y|\delta X, \delta K_0]$:

- ARK, SR, and MC are linear: $op(B_i) \oplus op(B_j) = op(B_i \oplus B_j)$
 \leadsto Probabilities are equal to 1 (or 0) for these operators

- SB is not linear:
 - Let $Pr[\delta_o|\delta_i] = \frac{\#\{(B_1,B_2)\in[0,256]^2 \mid \delta_i = B_1 \oplus B_2 \text{ and } \delta_o = S(B_1) \oplus S(B_2)\}}{256}$
 \leadsto Probability to have output difference δ_o given input difference δ_i
 - Perfect cipher: $\forall \delta_i, \delta_o, Pr[\delta_o|\delta_i] = \frac{1}{256}$... but this is impossible!
 - SB of AES: if $\delta_o = \delta_i = 0$ then $Pr[\delta_o|\delta_i] = 1$ else $Pr[\delta_o|\delta_i] \in \{0, \frac{2}{256}, \frac{4}{256}\}$
Two step solving process [Biryukov et al. 2010, Fouque et al. 2013]

Step 1: Abstract differential bytes $\delta B = B \oplus B'$ to booleans ΔB

- For each differential byte δB: $\Delta B = 0$ if $\delta B = 0$; $\Delta B = 1$ if $\delta B \in [1, 255]$
Two step solving process [Biryukov et al. 2010, Fouque et al. 2013]

Step 1: Abstract differential bytes $\delta B = B \oplus B'$ to booleans ΔB

- For each differential byte δB: $\Delta B = 0$ if $\delta B = 0$; $\Delta B = 1$ if $\delta B \in [1, 255]$
- Minimize the nb of boolean variables $\Delta X_i[j][k]$ and $\Delta K_i[j][3]$ set to 1:
 - If $\delta X_i[j][k] = \delta S X_i[j][k] = 0$ then $Pr[\delta S X_i[j][k] | \delta X_i[j][k]] = 1$
 - Otherwise $Pr[\delta S X_i[j][k] | \delta X_i[j][k]] \in \{0, \frac{2}{256}, \frac{4}{256}\}$
Two step solving process [Biryukov et al. 2010, Fouque et al. 2013]

Step 2: Concretize booleans to differential bytes

- If $\Delta B = 0$ then set δB to 0; otherwise search for $\delta B \in [1, 255]$

 - If not possible: Solution byte-inconsistent
 - If possible: Solution byte-consistent

\leadsto Maximize the probability $Pr[\delta SX_r|\delta X, \delta K_0]$

\[\Delta K_0 \rightarrow \Delta K_{i+1} \rightarrow \Delta X_i \rightarrow \Delta SX_i \rightarrow \Delta R_i \rightarrow \Delta M_i \rightarrow \Delta X_r \rightarrow \Delta SX_r \rightarrow \Delta R \rightarrow \Delta K \rightarrow \Delta X \rightarrow \Delta K_0 \]
Existing approaches

Biryukov et al. 2010:

⇝ Branch & Bound for Step 1

▶ $|K| = 128$: Several days of CPU time

▶ $|K| = 192$: Several weeks of CPU time

Fouque et al. 2013:

⇝ Graph traversal for Step 1

▶ $|K| = 128$: 30mn of CPU time (on 12 cores) but 60 GB of memory

▶ Not extended to $|K| = 192$ or 256

In both cases: Difficult and time-consuming programming work

⇝ Checking the correctness of the program is not straightforward...
What about Constraint Programming (CP)?

Solving a problem with CP:

- Define the problem with a declarative language:
 - Variables (unknowns) and their domains
 - Constraints (relations between variables)
 - Optionally: Objective function to optimize
- Use generic engines to search for solutions

Using CP to compute related-key differentials:

- Step 1: Less than 35 hours for the hardest instance
- Step 2: Less than 6 minutes for the hardest instance
- Prove inconsistency of a solution proposed by Biryukov et al. 2010
- New related-key differentials:
 - $|K| = 128$: $p = 2^{-79}$ (instead of 2^{-81}) for 4 rounds
 - $|K| = 192$: $p = 2^{-176}$ for 10 rounds
 - $|K| = 256$: $p = 2^{-146}$ (instead of 2^{-154}) for 14 rounds
Revisiting AES RKD Attacks with CP

- Differential cryptanalysis of the AES

- First CP model for Step 1

- Second CP model for Step 1

- Third CP model for Step 1

- CP model for Step 2

- Results

- Conclusion
CP\textsubscript{Basic}: First CP model for Step 1

For each round i, for each row j and each column k:
\[
\Delta X[j][k], \Delta X_i[j][k], \Delta SX_i[j][k], \Delta R_i[j][k], \Delta M_i[j][k], \Delta K_i[j][k], \Delta SK_i[j][3]
\]

- Boolean variables \leadsto Domains $= \{0, 1\}$
CP_{Basic}: First CP model for Step 1

ARK performs XOR operations:

- \(\forall j, k \in [0, 3] : XOR(\Delta X[j][k], \Delta K_0[j][k], \Delta X_0[j][k]) \)
- \(\forall i \in [0, r-1], \forall j, k \in [0, 3] : XOR(\Delta M_i[j][k], \Delta K_{i+1}[j][k], \Delta X_{i+1}[j][k]) \)
CP_{Basic}: First CP model for Step 1

XOR at the byte level: \(\delta B_1 \oplus \delta B_2 \oplus \delta B_3 = 0 \)

\[
(\delta B_1, \delta B_2, \delta B_3) \in \{(0, 0, 0)\} \\
\cup \{(0, x, x) \mid x \in [1, 255]\} \\
\cup \{(x, 0, x) \mid x \in [1, 255]\} \\
\cup \{(x, x, 0) \mid x \in [1, 255]\} \\
\cup \{(x, y, z) \mid x, y, z \in [1, 255], x \neq y \neq z\}
\]

XOR at the boolean level:

\[
(\Delta B_1, \Delta B_2, \Delta B_3) \in \{(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)\}
\]

Definition of the \(\text{XOR}(\Delta B_1, \Delta B_2, \Delta B_3)\) constraint:

\[
\Delta B_1 + \Delta B_2 + \Delta B_3 \neq 1
\]
CP_{Basic}: First CP model for Step 1

SubBytes does not introduce nor remove differences (because $B_i \oplus B_j = 0 \iff S(B_i) \oplus S(B_j) = 0$)

- $\forall i \in [0, r], \forall j, k \in [0, 3]: \Delta X_i[j][k] = \Delta SX_i[j][k]$
- $\forall i \in [0, r], \forall j \in [0, 3]: \Delta K_i[j][3] = \Delta SK_i[j][3]$
CP_{Basic}: First CP model for Step 1

SR shifts bytes: $\forall i \in [0, r - 1], \forall j, k \in [0, 3]:$

$$\Delta R_i[j][k] = \Delta S X_i[j][k + j \% 4]$$
CP\textsubscript{Basic}: First CP model for Step 1

MC multiplies each column by a fixed matrix

- Ensures the MDS property:
 \[\forall i \in [0, r - 1], \forall k \in [0, 3] \]
 \[\sum_{j=0}^{3} \Delta R_i[j][k] + \Delta M_i[j][k] \in \{0, 5, 6, 7, 8\} \]
CP\textsubscript{Basic}: First CP model for Step 1

KS performs XOR, byte shifts, and SB operations

For AES-128: \(\forall i \in [0, r - 1], \forall j \in [0, 3] : \)

- **Column 0:**
 \[\text{XOR}(\Delta K_{i-1}[j][0], \Delta SK_{i-1}[(j + 1)\%4][3], \Delta K_i[j][0]) \]

- **Columns** \(k \in [1, 3] : \)
 \[\text{XOR}(\Delta K_{i-1}[j][k], \Delta K_i[j][k - 1], \Delta K_i[j][k]) \]
CP_{Basic}: First CP model for Step 1

Goal: Minimize the number of differences that pass through SubBytes:

\[
\text{obj}_{\text{Step1}} = \sum_{i=0}^{r-1} \sum_{j=0}^{3} (\Delta K_i[j][3] + \sum_{k=0}^{3} \Delta X_i[j][k])
\]

Ordering heuristics:

- First choose variables that occur in the objective function
CP\textsubscript{Basic}: First CP model for Step 1

<table>
<thead>
<tr>
<th>r</th>
<th>obj\textsubscript{Step1}</th>
<th>BCS</th>
<th>S</th>
<th>Gecode</th>
<th>Choco 4</th>
<th>Chuffed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Time CP</td>
<td>Time CP</td>
<td>Time CP</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.0 9e1</td>
<td>0.0 4e1</td>
<td>0.0 5e1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>5e2</td>
<td>0.1 2e3</td>
<td>0.4 2e3</td>
<td>0.0 7e2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
<td>5e3</td>
<td>1.3 2e4</td>
<td>1.8 1e4</td>
<td>0.2 5e3</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>2</td>
<td>2e4</td>
<td>6.0 6e4</td>
<td>5.1 5e4</td>
<td>0.9 2e4</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0.2 2e4</td>
<td>0.6 1e4</td>
<td>0.3 8e3</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>0</td>
<td>2e4</td>
<td>7.1 1e5</td>
<td>5.4 7e4</td>
<td>1.4 4e4</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>0</td>
<td>6e6</td>
<td>- -</td>
<td>1161.2 2e7</td>
<td>113.5 6e6</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>0</td>
<td>9e7</td>
<td>- -</td>
<td>- -</td>
<td>1974.5 9e7</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>2</td>
<td>-</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
</tbody>
</table>

- **r** = Nb rounds
- **obj\textsubscript{Step1}** = Nb of differences that pass through SB (active S-boxes)
- **BCS** = Number of byte-consistent solutions
 - \(\leadsto\) Boolean solutions that can be concretized to byte solutions
- **S** = Number of solutions \(\leadsto\) Most NOT byte-consistent
- **CP** = number of choice points in the search tree
 - \(\leadsto\) Chuffed explores less choice points and is faster
Revisiting AES RKD Attacks with CP

- Differential cryptanalysis of the AES
- First CP model for Step 1
- **Second CP model for Step 1**
- Third CP model for Step 1
- CP model for Step 2
- Results
- Conclusion
CP_{EQ}: Second CP model for Step 1

What’s wrong with CP_{Basic}?

XOR constraints do not propagate equality relationships at the byte level

- For example, if $\delta a \oplus \delta b \oplus \delta c = 0$ and $\delta a \oplus \delta b \oplus \delta d = 0$ then $\delta c = \delta d$
- However, at the boolean level, we only propagate: $\Delta A + \Delta B + \Delta C \neq 1$ and $\Delta A + \Delta B + \Delta D \neq 1$

New variables and constraints to model byte equalities:

- For each couple of differential bytes ($\delta A, \delta B$):
 - $EQ_{\delta A, \delta B} = 1$ if $\delta A = \delta B$
 - $EQ_{\delta A, \delta B} = 0$ if $\delta A \neq \delta B$
- Symmetry: $EQ_{\delta A, \delta B} = EQ_{\delta B, \delta A}$
- Transitivity: $EQ_{\delta A, \delta B} = EQ_{\delta B, \delta C} = 1 \Rightarrow EQ_{\delta A, \delta C} = 1$
- Relation with Δ variables:
 - $EQ_{\delta A, \delta B} = 1 \Rightarrow \Delta A = \Delta B$
 - $EQ_{\delta A, \delta B} = 0 \Rightarrow \Delta A + \Delta B \neq 0$
CP\textsubscript{EQ}: Second CP model for Step 1

Definition of XOR in \textit{CP\textsubscript{Basic}}: \(\Delta B_1 + \Delta B_2 + \Delta B_3 \neq 1 \)

Can we strengthen it by exploiting byte equalities?
Yes, because:

- \(\Delta B_1 = 0 \Leftrightarrow \delta B_2 = \delta B_3 \)
- \(\Delta B_2 = 0 \Leftrightarrow \delta B_1 = \delta B_3 \)
- \(\Delta B_3 = 0 \Leftrightarrow \delta B_1 = \delta B_2 \)

New definition of XOR:

\[
\text{XOR}(\Delta B_1, \Delta B_2, \Delta B_3) \Leftrightarrow ((\Delta B_1 + \Delta B_2 + \Delta B_3 \neq 1) \\
\quad \land (EQ_{\delta B_1, \delta B_2} = 1 - \Delta B_3) \\
\quad \land (EQ_{\delta B_1, \delta B_3} = 1 - \Delta B_2) \\
\quad \land (EQ_{\delta B_2, \delta B_3} = 1 - \Delta B_1))
\]
CP_{EQ}: Second CP model for Step 1

MDS also holds when XORing different columns of δR and δM:

\[\forall i_1, i_2 \in [0, r - 1], \forall k_1, k_2 \in [0, 3], \text{the number of bytes equal to } 0 \text{ in} \]
\[\delta R_{i_1}[j][k_1] \oplus \delta R_{i_2}[j][k_2] \text{ and } \delta M_{i_1}[j][k_1] \oplus \delta M_{i_2}[j][k_2] \in \{0, 1, 2, 3, 8\} \]

New constraints to ensure MDS: \(\forall i_1, i_2 \in [0, r - 1], \forall k_1, k_2 \in [0, 3] \)
\[\sum_{j=0}^{3} EQ\delta R_{i_1}[j][k_1], \delta R_{i_2}[j][k_2] + EQ\delta M_{i_1}[j][k_1], \delta M_{i_2}[j][k_2] \in \{0, 1, 2, 3, 8\} \]
CP_{EQ}: Second CP model for Step 1

KS (mainly) performs XOR operations:

- **Column 0:** $K_i[j][0] = K_{i-1}[j][0] \oplus SK_{i-1}[(j+1)\%4][3]$
- **Columns $k \in [1, 3]:$$ K_i[j][k] = K_i[j][k-1] \oplus K_{i-1}[j][k]$

Each byte of K_i is eq. to a XOR of bytes of K_0 and SK_{i-1}

Ex: $K_2[1][1] = K_2[1][0] \oplus K_1[1][1]$

\[
= K_1[1][0] \oplus SK_1[2][3] \oplus K_1[1][0] \oplus K_0[1][1] = SK_1[2][3] \oplus K_0[1][1]
\]

New constraints:

- Pre-compute sets $V_{i,j,k}$ such that $\delta K_i[j][k] = \bigoplus_{\delta B \in V_{i,j,k}} \delta B$
- Introduce set variables $S_{i,j,k}$ and post the following constraints:
 - $S_{i,j,k} = \{\delta B \in V_{i,j,k} | \Delta B = 1\}$
 - If $S_{i,j,k} = \emptyset$ then $\Delta K_i[j][k] = 0$
 - If $S_{i,j,k} = \{\delta B\}$ then $EQ_{\delta K_i[j][k], \delta B} = 1$
 - If $S_{i,j,k} = \{\delta B_1, \delta B_2\}$ then $XOR(\Delta B_1, \Delta B_2, \Delta K_i[j][k])$
 - If $\exists i', j', k'$ s.t. $S_{i,j,k} = S_{i',j',k'}$ then $EQ_{\delta K_i[j][k], \delta K_{i'}[j'][k']} = 1$
Revisiting AES RKD Attacks with CP

- Differential cryptanalysis of the AES
- First CP model for Step 1
- Second CP model for Step 1
- Third CP model for Step 1
- CP model for Step 2
- Results
- Conclusion
Alternative way to model equivalence classes:

- For each boolean variable ΔB, define an integer variable $\text{Class}_{\delta B}$
 $\Rightarrow D(\text{Class}_{\delta B}) = [0, 255]$

- Constraints:
 - $(\Delta B = 0) \iff (\text{Class}_{\delta B} = 0)$
 - Global *precede* constraint to break symmetries
 - Update all constraints:
 - \Rightarrow replace $EQ_{\delta B_1, \delta B_2} = 1$ by $\text{Class}_{\delta B_1} = \text{Class}_{\delta B_2}$
 - \Rightarrow replace $EQ_{\delta B_1, \delta B_2} = 0$ by $\text{Class}_{\delta B_1} \neq \text{Class}_{\delta B_2}$
Revisiting AES RKD Attacks with CP

- Differential cryptanalysis of the AES
- First CP model for Step 1
- Second CP model for Step 1
- Third CP model for Step 1
- CP model for Step 2
- Results
- Conclusion
CP model for Step 2

1. Initialize Obj_{Step1} to 1
2. Step 1: Search for all boolean solutions
3. For each boolean solution of Step 1:
 - Step 2: Search for byte values that maximize $Pr[\delta SX_r | \delta X, \delta K_0]$
 (or detect inconsistency and set Pr to 0)

 \Rightarrow Let Pr_{max} be the largest probability wrt all boolean solutions of Step 1

4. If $Pr_{max} < 2^{-6(Obj_{Step1}+1)}$ then increment Obj_{Step1} and go to (2)
 Otherwise, return Pr_{max}
CP model for Step 2

- For each boolean variable ΔB: Integer variable δB
 - If $\Delta B = 0$ in the Step 1 solution then: $D(\delta B) = \{0\}$
 - Otherwise: $D(\delta B) = [1, 255]$

- For each byte A on which SB is applied: Integer variable P_A
 - \sim Base 2 logarithm of $Pr(\delta SA|\delta A)$
 - If $\Delta A = \Delta SA = 0$ then: $D(P_A) = \{0\}$ because $Pr(0|0) = 1$
 - Otherwise: $D(P_A) = \{-7, -6\}$ because $Pr(\delta SA|\delta A) \in \{\frac{2}{256}, \frac{4}{256}\}$

- Objective function: Maximize $obj_{Step2} = \sum_{A \text{ on which SB is applied}} P_A$
Table constraint related to SB:
For each byte A on which SB is applied:

$$(\delta A, \delta S A, P_A) \in \{(X, Y, P)| \exists (B_1, B_2) \in [0, 255] \times [0, 255], X = B_1 \oplus B_2, Y = S(B_1) \oplus S(B_2), P = \log_2(Pr(Y|X))\}$$

Constraints related to KS, ARK, SR, and MC:
\leadsto Straightforward definition with table constraints
Revisiting AES RKD Attacks with CP

- Differential cryptanalysis of the AES
- First CP model for Step 1
- Second CP model for Step 1
- Third CP model for Step 1
- CP model for Step 2

- Results

- Conclusion
Experimental setup

Languages and Solvers:

- CP models for Step 1 are defined in MiniZinc
 - Benchmark for the 2016 MiniZinc Challenge
 - Best results are obtained with Chuffed and Picat
- The CP model for Step 2 is defined in Choco 4 (Java CP library)

CPU time limit for Step 1:

- 24 hours on a 3.5 GHz i7-4710MQ processor with 8 gigabytes of memory
- If not solved in 24 hours: Decompose into independent subproblems
Scale-up properties: AES-128

<table>
<thead>
<tr>
<th>r</th>
<th>obj_{Step1}</th>
<th>CP_{EQ}</th>
<th>CP_{Class}</th>
<th># boolean solutions</th>
<th>$# \text{byte-cons. solutions}$</th>
<th>time</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2^{-31}</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>114</td>
<td>81</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>2^{-79}</td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>2799</td>
<td>2049</td>
<td>1236</td>
<td>97</td>
<td>248</td>
<td>2^{-105}</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>?</td>
<td>?</td>
<td>1542</td>
<td>20</td>
<td>?</td>
<td>2^{-131}</td>
</tr>
</tbody>
</table>

\Rightarrow Useless to go on with $r > 6$ because $2^{-131} < 2^{-128}$

Recall of the results of CP_{Basic} for Step 1:

- $r = 3$, $obj_{Step1} = 5 : 2e^4$ boolean solutions
- $r = 4$, $obj_{Step1} = 11 : 9e^7$ boolean solutions

\Rightarrow Most byte-inconsistent sol. are removed by new constraints at byte level
Extension to AES-192 and AES-256

Update constraints related to KeySchedule:

- Step 1: XOR constraints combined with byte shifts
- Step 2: XOR constraints combined with byte shifts + SubBytes on some columns
Extension to AES-192 and AES-256

Update constraints related to KeySchedule:

- Step 1: XOR constraints combined with byte shifts
- Step 2: XOR constraints combined with byte shifts + SubBytes on some columns
Scale-up properties: AES-192

<table>
<thead>
<tr>
<th>r</th>
<th>obj_{Step1}</th>
<th>Step 1</th>
<th></th>
<th>Step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>time</td>
<td>CP_{EQ}</td>
<td>CP_{Class}</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>12</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>573</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>2108</td>
<td>988</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td>5833</td>
<td>2999</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>44436</td>
<td>24619</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>-</td>
<td>81073</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>29</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>31</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

\Rightarrow Useless to go on with $r > 11$ or $obj_{Step1} > 31$ because $6 \times 32 = 192$
Scale-up properties: AES-256

<table>
<thead>
<tr>
<th>r</th>
<th>obj_{Step1}</th>
<th>CP_{EQ}</th>
<th>CP_{Class}</th>
<th># boolean solutions</th>
<th>CP_{EQ}</th>
<th>CP_{Class}</th>
<th># byte-cons. solutions</th>
<th>time</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>33</td>
<td>0</td>
<td>1</td>
<td>33</td>
<td>2^{-6}</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>14</td>
<td>0</td>
<td>1</td>
<td>14</td>
<td>2^{-18}</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2^{-18}</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>30</td>
<td>16</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>25</td>
<td>2^{-30}</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>58</td>
<td>34</td>
<td>1</td>
<td>1</td>
<td>14</td>
<td>25</td>
<td>2^{-30}</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>2894</td>
<td>1722</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>2^{-60}</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>40064</td>
<td>21972</td>
<td>2</td>
<td>0</td>
<td>12</td>
<td>25</td>
<td>2^{-92}</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>15</td>
<td>85465</td>
<td>49138</td>
<td>16</td>
<td>16</td>
<td>60</td>
<td>25</td>
<td>2^{-92}</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>106</td>
<td>25</td>
<td>2^{-98}</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>115</td>
<td>25</td>
<td>2^{-122}</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>238</td>
<td>25</td>
<td>2^{-122}</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>326</td>
<td>25</td>
<td>2^{-146}</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>150</td>
<td>25</td>
<td>2^{-146}</td>
<td></td>
</tr>
</tbody>
</table>

D. Gerault$^{(1)}$, P. Lafourcade$^{(1)}$, M. Minier$^{(2)}$, C. Solnon$^{(3)}$
Decomposition of hard instances into independent subproblems

For each round \(i \): Integer variables \(\text{Sum}X_i \) and \(\text{Sum}K_i \)

\[\text{\(\Rightarrow \) Number of differences in } \delta X_i: \text{Sum}X_i = \sum_{j,k \in [0,3]} \Delta X_i[j][k] \]

\[\text{\(\Rightarrow \) Number of differences in } \delta K_i: \text{Sum}K_i = \sum_{j \in [0,3]} \Delta K_i[j][3] \]

- One subproblem for each possible value of \(\text{Sum}X_i \) and \(\text{Sum}K_i \)
- All subproblems are independent and may be solved in parallel

Combine Picat and Chuffed to solve the subproblems

- Use Picat to enumerate \(\text{Sum}X_i \) and \(\text{Sum}K_i \) with solutions (if any)
- Use Chuffed to enumerate all solutions, given \(\text{Sum}X_i \) and \(\text{Sum}K_i \) given by Picat

Time to solve the hardest instance

\[\text{\(\Rightarrow \) AES-192 with } r = 10 \text{ and } obj_{\text{Step1}} = 29 \]

- Less than 24 hours for each subproblem and 35 hours for the complete sum
Revisiting AES RKD Attacks with CP

- Differential cryptanalysis of the AES
- First CP model for Step 1
- Second CP model for Step 1
- Third CP model for Step 1
- CP model for Step 2
- Results

Conclusion
Conclusion

Better related-key differential Characteristic

- For AES-128, For 4 rounds, our solution (proved optimal): \(\sim obj_{Step1} = 12 \) and \(Pr = 2^{-79} \) (before \(obj_{Step1} = 13 \) and \(Pr = 2^{-81} \))

- For AES-192, For 10 rounds (not 11) best related-key differential trail:
 \(\sim obj_{Step1} = 29 \) and \(Pr = 2^{-176} \)

- For AES-256, For 14 rounds, our solution (proved optimal):
 \(\sim obj_{Step1} = 24 \) and \(Pr = 2^{-146} \) (before \(Pr = 2^{-154} \))

Declarative framework for Cryptanalysis?

CP models describe problems, not how to solve them:

- Easier to define and check than a full program
 \(\sim \) Better solutions than [Biryukov et al 2009] and [Fouque et al 2013]

- Models are defined with the MiniZinc language:
 \(\sim \) We can use different CP solvers to solve them
Thanks for Your Attention!

Questions?