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Outline
● Introduction

○ Amossys, M&NTIS platform
○ Objective

● Contributions
1. Rule-based on system logs
2. Anomaly detection for network traces

● Future works
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A bit of context
the company, the tool
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Amossys

● CESTI

● Audit &  Consulting

● Cybersecurity R&D

Deliver products and services 
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Part of Almond



● Simulation environment 

● Developed internally at first 

○ attack sim

○ produce reports

○ …

● Sold as a SaaS
○ Test your network virtually

M&NTIS platform
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A quick history



M&NTIS platform
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● Run simulations

● Test tools

● Instantiate network 
topologies

Example: CyberRange from Airbus 

Virtual environment



M&NTIS platform

● Extract simulated Logs
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System logs (ECS) Network logs (PACP)

Blue team



M&NTIS platform

● Perform an attack scenario

● Produce a step-by-step attack report
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Red team



We know our environment
 Time to run a simulation
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WWW

INTRANET

Scenario Florama
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subnet

subnet
subnet

subnet

DMZ

RED TEAM

Outside facing network

TARGET Entry point

Network structure



Scenario “Florama”

Benign scenarios

● No attack is performed
● Background activities

○ send/receive mail
○ browsing
○ etc…
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Benign



Scenario “Florama” 
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Attack steps

● Deploy attack infrastructure

● Compromise WebServer

● Reach proxy

● Find target and execute code 

remotely

Attack

Full scenario



Expected platform improvements

● Detection of attacks from logs

● Machine learning methods for detection
○ SIEM

○ XDR

○ Network probes
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Our objective

● Correlate attack steps with logs
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System logs (ECS)

Network logs (PACP)

Attack steps



2 -  Anomaly Detection

Exploit network logs (PACP)

Contributions: develop a hybrid approach
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1 - Rule-Based Detection

Exploit system logs (ECS)



System logs
with rule-based approach
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System logs
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1

2

3

Detection workflow



System logs
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● Contains every attack procedures and steps

● Filtering out setup procedure

● payload : commands and sub-commands
● targets IP addresses
● Start & end timestamps

1. Parsing and extracting features



System logs
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● Sigma rules
parsed commands

● Lucene query
Sigma rule + remaining features

2. Detection workflow overview



System logs
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3. Detection workflow overview

● Run a query

● Receive results

● Correlate results then label traces



System logs

Data format: JSON Elastic Common Schema (ECS) events 

Parsing

● “Simple” grep
● JSON specific jq
● Sigma1 rules log format agnostic (... with the good converter)

Based on the attack report

● Identify steps
● Extract commands

221 - Github SigmaHQ/sigma

Rule-based detection

https://github.com/SigmaHQ/sigma


System logs
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From observed data to attack step



System logs
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From observed data to attack step



System logs

Enhance robustness

● Actions coverage
● Platform specific rules

Improve detection performance

● Add pivoting rules
    On scenario specific rules hits
    Indicators: Process IDentifier (PID), hash, …

● Confidence score: Sigma tags
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Improvements 🔭 Workflow output:
rules with matching logs



2 -  Anomaly Detection

Exploit network logs (PACP)

Contributions: develop a hybrid approach
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1 - Rule-Based Detection

Exploit system logs (ECS)



Network logs
with anomaly detection approach
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Network logs

● PCAP file with packets
● Flow meter tool 2

○ bidirectional flows from layer 3 and 4 data
○ time related features

● Some output features
○ flow_id
○ src_ip
○ src_port
○ dst_ip
○ dst_port
○ protocol
○ IAT
○ timestamp
○ Duration

282 - Github hieulw/cicflowmeter

Features extraction

https://github.com/hieulw/cicflowmeter


Network logs

29*A. H. Lashkari,et al (2024)

Flow Generation



Network flow labelling
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BEGIN

  

  LOAD PCAPS

  LOAD attack_metadata

  PROCESS network_flows FROM PCAPs

   

  FOR EACH flow IN network_flows DO

      extract (src_ip, dst_ip, timestamp)

     

      IF (src_ip, dst_ip, timestamp) MATCH 

attack_metadata THEN

         

          LABEL flow AS 'attack_metadata.name'

          STORE flow

      ELSE

          

          CALL AnomalyDetection (flow)

      END IF

  END FOR

END



1 Pre-processing

2 Clustering

3 Anomaly-detection
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Network logs
Machine learning workflow
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T-SNE

K-Means

X_train Shape:  (10285,79)

n_clusters

Network logs
Clustering



Network logs

33Song, Y (2021). 

Autoencoder



Network logs
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E(      ,      ) = 10.7 

E(      ,      ) = 0.01 Benign

Anomaly

Threshold defined on benign data 

Autoencoder for Anomaly Detection (AD)
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Network logs
Autoencoder results

Only Benign With Attack

t



Network logs

● More benign data for training
● Find best features
● Labeled dataset to see if the approach works
● Impact of the topology of the network ?

○ General model or need to train on the targeted network ?

● Use transfer learning on existing models
○ Reduces need of having a large dataset

● Sequence of network log 
○ More information than in single log
○ Long Short-Term Memory Neural Network
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Improvements 🔭



Future work 🔭

● Ensuring reproductible normal trafic
○ Ease detection of attack logs

● Feedback loop:
○ Use anomaly detection to create new sigma rules

● More ML methods
○ E.g. ensemble learning
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Take away

Rules are a great start ….  and can be completed with anomaly detection

Need for a feedback loop
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