# **REDOCS 2024 - AMOSSYS**

Automating dataset labelling



#### Rémi BOUCHAYER <u>remi.bouchayer@ip-paris.fr</u>

KNDS France / SAMOVAR, Télécom SudParis / LyRIDS, ECE Paris

Armand Florent TSAFACK PIUGIE <u>armand-florent.tsafack-piugie@unicaen.fr</u> UNICaen, Greyc, Safe, téïcée

Quentin JAYET <u>quentin.jayet@cea.fr</u> CEA GRENOBLE

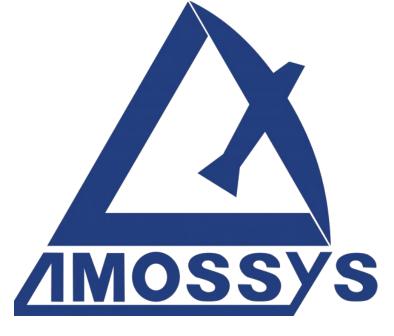
#### Chris VERSCHELDEN chris.verschelden@proton.me

IRIT - ARGOS

Usman ISAH <u>usman.isah@insa-cvl.fr</u>

INSA - CENTER VAL DE LOIRE

#### Outline


#### • Introduction

- Amossys, M&NTIS platform
- Objective
- Contributions
  - 1. Rule-based on system logs
  - 2. Anomaly detection for network traces
- Future works

## A bit of context the company, the tool

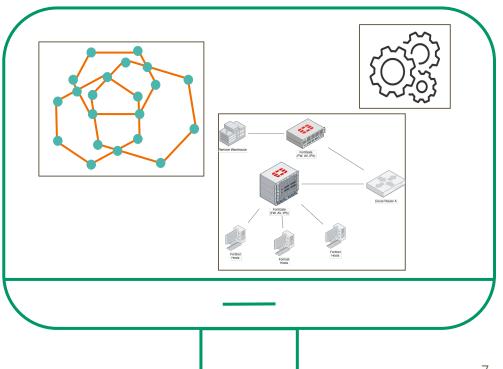
#### **Amossys** Part of Almond

- CESTI
- Audit & Consulting
- Cybersecurity R&D



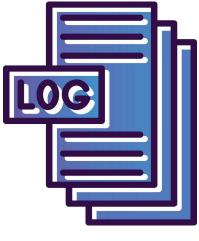
Deliver products and services

#### **M&NTIS platform** A quick history


- Simulation environment
- Developed internally at first
  - attack sim
  - produce reports
  - 0 ...
- Sold as a SaaS
  - Test your network virtually



#### **M&NTIS platform** Virtual environment


- Run simulations
- Test tools
- Instantiate network topologies

Example: CyberRange from Airbus

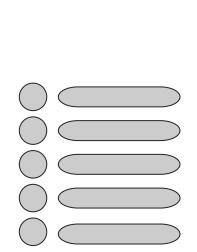


#### **M&NTIS platform** Blue team

• Extract simulated Logs



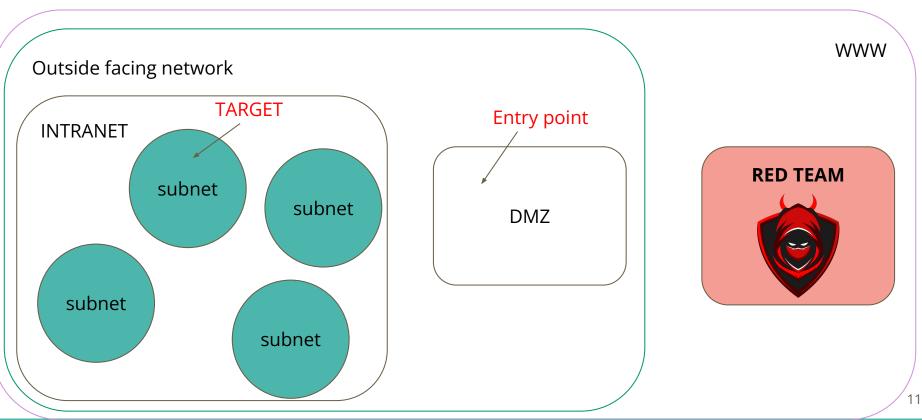
System logs (ECS)




Network logs (PACP)

#### M&NTIS platform Red team

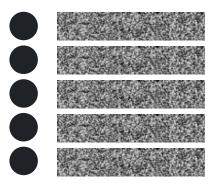
• Perform an attack scenario


• Produce a step-by-step attack report



## We know our environment Time to run a simulation

### **Scenario Florama**


#### **Network structure**



## Scenario "Florama" Benign

#### **Benign scenarios**

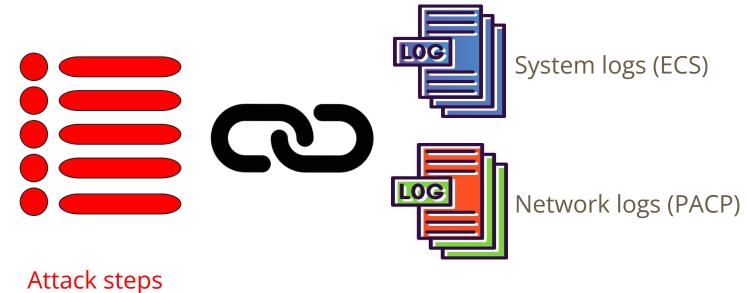
- No attack is performed
- Background activities
  - send/receive mail
  - browsing
  - **etc...**



### Scenario "Florama" Attack

#### **Attack steps**

- Deploy attack infrastructure
- Compromise WebServer
- Reach proxy
- Find target and execute code remotely




## **Expected platform improvements**

- Detection of attacks from logs
- Machine learning methods for detection
  - SIEM
  - XDR
  - Network probes

### **Our objective**

• Correlate attack steps with logs

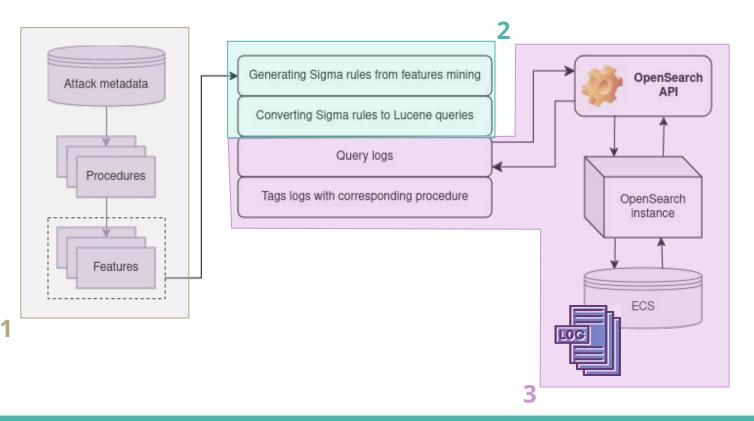


## **Contributions: develop a hybrid approach**

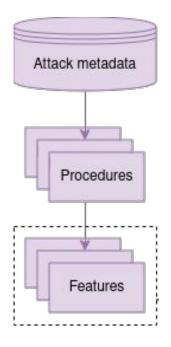
#### **1 - Rule-Based Detection**



Exploit system logs (ECS)


#### 2 - Anomaly Detection




Exploit network logs (PACP)

## System logs with rule-based approach

#### **System logs** Detection workflow



#### **System logs** 1. Parsing and extracting features



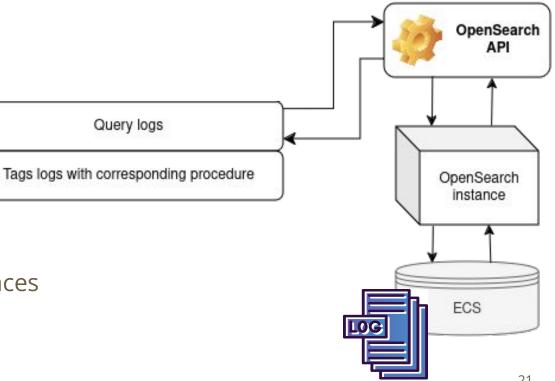
• Contains every attack procedures and steps

• Filtering out setup procedure

- payload : commands and sub-commands
- targets IP addresses
- Start & end timestamps

#### **System logs** 2. Detection workflow overview

Generating Sigma rules from features mining


Converting Sigma rules to Lucene queries

- Sigma rules parsed commands
- Lucene query Sigma rule + remaining features

| 1                                                                            | title: CVE-2024-1212 Exploitation                                                                                                                |   |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2                                                                            | id: eafb8bd5                                                                                                                                     |   |
| 3                                                                            | status: experimental                                                                                                                             |   |
| 4                                                                            | description:                                                                                                                                     |   |
| ! {                                                                          |                                                                                                                                                  | 9 |
| ! "                                                                          | uery": {<br>"bool": {<br>"must": [                                                                                                               |   |
| 1                                                                            | 1                                                                                                                                                |   |
| 1                                                                            | <pre>"query_string": { "query": "process.args:chmod AND process.args:\\\\+x AND process.args:\\\\/tmp\\\/nmap", "analyze_wildcard": "TRUE"</pre> |   |
| 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>} | )                                                                                                                                                |   |
| 1                                                                            | "filter": [                                                                                                                                      |   |
| 1                                                                            | {                                                                                                                                                |   |
| 1                                                                            | "range": {<br>"@timestamp": {                                                                                                                    |   |
| 1                                                                            | "gte": "2024-09-05T06:54:11Z",                                                                                                                   |   |
| 1                                                                            | "lte": "2024-09-05T06:54:22Z",                                                                                                                   |   |
| 1                                                                            | "format": "strict_date_optional_time"                                                                                                            |   |
| 21                                                                           |                                                                                                                                                  |   |
| 2                                                                            | }                                                                                                                                                |   |
| 2:                                                                           | 1                                                                                                                                                |   |
| 2; }                                                                         | 1                                                                                                                                                |   |
| 2.}                                                                          |                                                                                                                                                  |   |
| 25                                                                           | <pre>condition: all of selection_*</pre>                                                                                                         |   |
| 26                                                                           | falsepositives:                                                                                                                                  |   |
| 27                                                                           | - Unlikely                                                                                                                                       |   |
| 28                                                                           | level: high                                                                                                                                      |   |
| 20                                                                           |                                                                                                                                                  |   |

#### System logs **3. Detection workflow overview**

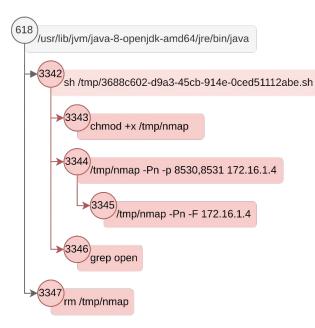
- Run a query
- Receive results
- Correlate results then label traces



#### **System logs** Rule-based detection

Data format: JSON Elastic Common Schema (ECS) events

Parsing


- "Simple" grep
- JSON specific jq
- Sigma<sup>1</sup> rules log format agnostic (... with the good converter)

Based on the attack report

- Identify steps
- Extract commands

#### **System logs** From observed data to attack step

Process tree (reconstructed from logs)



#### **System logs** From observed data to attack step

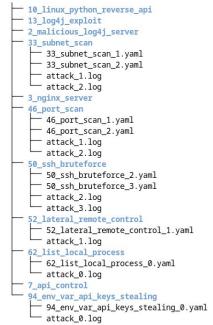
#### Process tree (reconstructed from logs)

#### Attack scenario 618 Attack step Actions //usr/lib/jvm/java-8-openjdk-amd64/jre/bin/java \*3342 sh /tmp/3688c602-d9a3-45cb-914e-0ced51112abe.sh 3343 chmod +x /tmp/nmap chmod +x /tmp/nmap ; \ rules ->(3344) /tmp/nmap -Pn -F 172.16.1.4; \ /tmp/nmap -Pn -p 8530,8531 172.16.1.4 /tmp/nmap -Pn -p 8530,8531 172.16.1.4 \ 2>/dev/null \ Port Scan on One IP grep open 3345 /tmp/nmap -Pn -F 172.16.1.4 grep open Tactic: Lateral Movement (TA008) 3347 Technique: Remote Services (T1021) rm /tmp/nmap rm /tmp/nmap

#### Attack metadata






Enhance robustness

- Actions coverage
- Platform specific rules

Improve detection performance

- Confidence score: Sigma tags

#### Workflow output: rules with matching logs



## **Contributions: develop a hybrid approach**

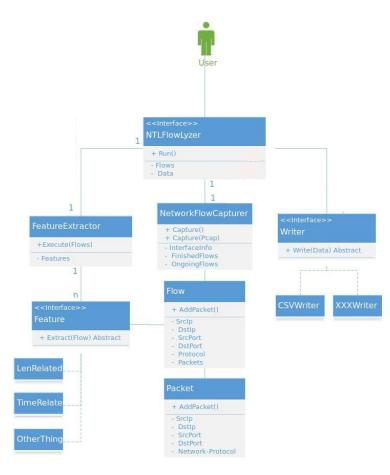
#### **1 - Rule-Based Detection**



Exploit system logs (ECS)

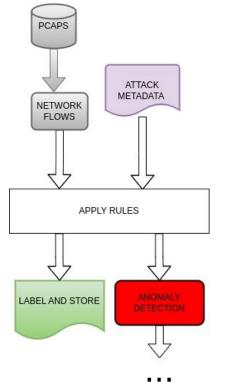
#### 2 - Anomaly Detection




Exploit network logs (PACP)

## Network logs with anomaly detection approach

#### **Network logs** Features extraction


- PCAP file with packets
- Flow meter tool <sup>2</sup>
  - bidirectional flows from layer 3 and 4 data
  - time related features
- Some output features
  - $\circ \quad \text{ flow\_id} \quad$
  - o src\_ip
  - src\_port
  - dst\_ip
  - dst\_port
  - protocol
  - IAT
  - timestamp
  - Duration

#### **Network logs** Flow Generation



\*A. H. Lashkari,et al (2024)

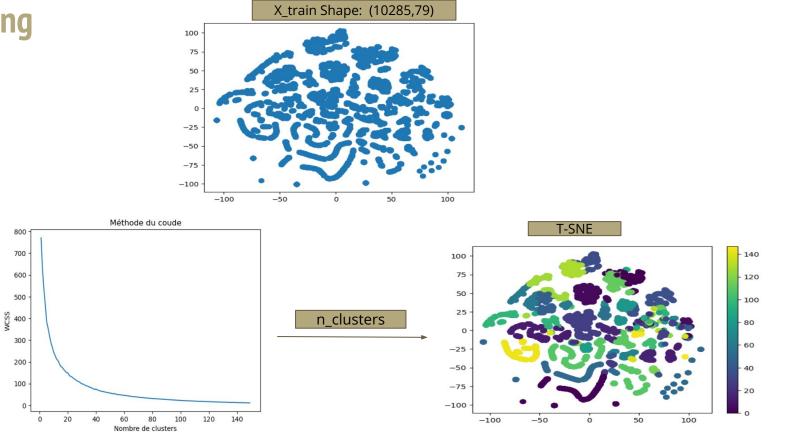
## **Network flow labelling**






| LOAD PCAPS                        |  |  |
|-----------------------------------|--|--|
| LOAD attack metadata              |  |  |
| PROCESS network flows FROM PCAPs  |  |  |
|                                   |  |  |
| FOR EACH flow IN network flows DO |  |  |

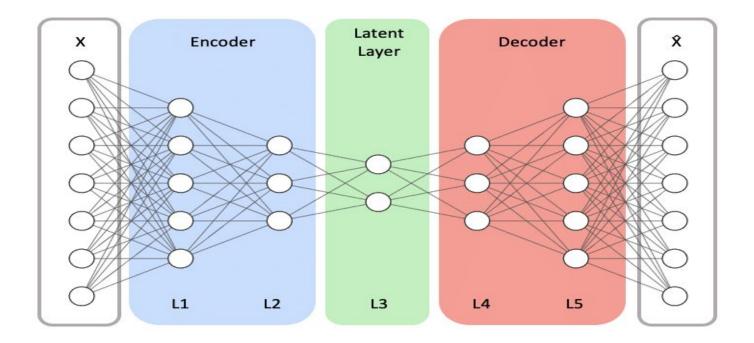
extract (src ip, dst ip, timestamp)


- IF (src ip, dst ip, timestamp) *MATCH* attack metadata *THEN* 
  - LABEL flow AS 'attack metadata.name' STORE flow ELSE



#### **Network logs** Machine learning workflow

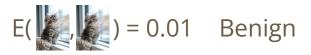



#### Network logs Clustering



K-Means

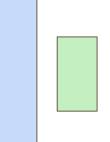
32

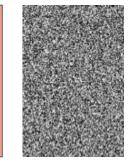

#### **Network logs** Autoencoder



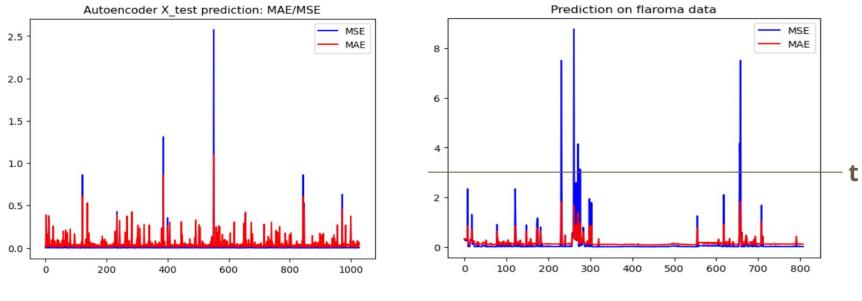
#### **Network logs** Autoencoder for Anomaly Detection (AD)






#### Threshold defined on benign data










#### **Network logs** Autoencoder results



Only Benign

With Attack





- More benign data for training
- Find best features
- Labeled dataset to see if the approach works
- Impact of the topology of the network?
  - General model or need to train on the targeted network?
- Use transfer learning on existing models
  - Reduces need of having a large dataset
- Sequence of network log
  - More information than in single log
  - Long Short-Term Memory Neural Network



- Ensuring reproductible normal trafic
  - Ease detection of attack logs
- Feedback loop:
  - Use anomaly detection to create new sigma rules
- More ML methods
  - E.g. ensemble learning



Rules are a great start .... and can be completed with anomaly detection Need for a feedback loop

#### Acknowledgments

Pascal, Alexandre & GDR Sécurité Amossys (and Cosmian, ScreenAct) CIRM

Our team :)

