A Survey of Fully Homomorphic Encryption

Jean-Sébastien Coron

University of Luxembourg

June 1st, 2017
Homomorphic Encryption

- Homomorphic encryption: perform operations on plaintexts while manipulating only ciphertexts.
 - Normally, this is not possible.

\[
\begin{align*}
\text{AES}_K(m_1) & \quad = \quad 0x3c7317c6bc5634a4ad8479c64714f4f8 \\
\text{AES}_K(m_2) & \quad = \quad 0x7619884e1961b051be1aa407da6cac2c \\
\text{AES}_K(m_1 \oplus m_2) & \quad = \quad ?
\end{align*}
\]

- For some cryptosystems with algebraic structure, this is possible. For example RSA:

\[
\begin{align*}
c_1 &= m_1^e \mod N \\
c_2 &= m_2^e \mod N \\
\Rightarrow c_1 \cdot c_2 &= (m_1 \cdot m_2)^e \mod N
\end{align*}
\]
Homomorphic Encryption

• Homomorphic encryption: perform operations on plaintexts while manipulating only ciphertexts.
 • Normally, this is not possible.

 \[AES_K(m_1) = 0x3c7317c6bc5634a4ad8479c64714f4f8 \]
 \[AES_K(m_2) = 0x7619884e1961b051be1aa407da6cac2c \]
 \[AES_K(m_1 \oplus m_2) = ? \]

• For some cryptosystems with algebraic structure, this is possible. For example RSA:

 \[c_1 = m_1^e \mod N \]
 \[c_2 = m_2^e \mod N \]
 \[\Rightarrow c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N \]
Homomorphic Encryption

- Homomorphic encryption: perform operations on plaintexts while manipulating only ciphertexts.
 - Normally, this is not possible.

\[
\begin{align*}
\text{AES}_K(m_1) & = 0x3c7317c6bc5634a4ad8479c64714f4f8 \\
\text{AES}_K(m_2) & = 0x7619884e1961b051be1aa407da6cac2c \\
\text{AES}_K(m_1 \oplus m_2) & = ?
\end{align*}
\]

- For some cryptosystems with algebraic structure, this is possible. For example RSA:

\[
\begin{align*}
c_1 &= m_1^e \mod N \\
c_2 &= m_2^e \mod N \\
\Rightarrow c_1 \cdot c_2 &= (m_1 \cdot m_2)^e \mod N
\end{align*}
\]
Homomorphic Encryption with RSA

- Multiplicative property of RSA.

\[
\begin{align*}
 c_1 &= m_1^e \mod N \\
 c_2 &= m_2^e \mod N \\
 \Rightarrow c &= c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N
\end{align*}
\]

- Homomorphic encryption: given \(c_1 \) and \(c_2 \), we can compute the ciphertext \(c \) for \(m_1 \cdot m_2 \mod N \)
 - using only the public-key
 - without knowing the plaintexts \(m_1 \) and \(m_2 \).
Homomorphic Encryption with RSA

- Multiplicative property of RSA.

 \[c_1 = m_1^e \mod N \]
 \[c_2 = m_2^e \mod N \]
 \[\Rightarrow c = c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N \]

- Homomorphic encryption: given \(c_1 \) and \(c_2 \), we can compute the ciphertext \(c \) for \(m_1 \cdot m_2 \mod N \)
 - using only the public-key
 - without knowing the plaintexts \(m_1 \) and \(m_2 \).
Paillier Cryptosystem

- Additively homomorphic: Paillier cryptosystem

\[\begin{align*}
 c_1 &= g^{m_1} \mod N^2 \\
 c_2 &= g^{m_2} \mod N^2 \\
 \Rightarrow c_1 \cdot c_2 &= g^{m_1 + m_2} [N] \mod N^2
\end{align*} \]

- Application: e-voting.
 - Voter \(i \) encrypts his vote \(m_i \in \{0, 1\} \) into:

\[c_i = g^{m_i} \cdot z_i^N \mod N^2 \]

- Votes can be aggregated using only the public-key:

\[c = \prod_{i} c_i = g^{\sum_{i} m_i} \cdot z \mod N^2 \]

- \(c \) is eventually decrypted to recover \(m = \sum_{i} m_i \)
Paillier Cryptosystem

- Additively homomorphic: Paillier cryptosystem

\[c_1 = g^{m_1} \mod N^2 \]
\[c_2 = g^{m_2} \mod N^2 \]
\[\Rightarrow c_1 \cdot c_2 = g^{m_1+m_2} [N] \mod N^2 \]

- Application: e-voting.
 - Voter \(i \) encrypts his vote \(m_i \in \{0, 1\} \) into:

\[c_i = g^{m_i} \cdot z_i^N \mod N^2 \]

- Votes can be aggregated using only the public-key:

\[c = \prod c_i = g^{\sum_i m_i} \cdot z \mod N^2 \]

- \(c \) is eventually decrypted to recover \(m = \sum_i m_i \)
Fully homomorphic encryption

- Multiplicatively homomorphic: RSA.

\[c_1 = m_1^e \mod N \]
\[c_2 = m_2^e \mod N \]
\[\Rightarrow c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N \]

- Additively homomorphic: Paillier

\[c_1 = g^{m_1} \mod N^2 \]
\[c_2 = g^{m_2} \mod N^2 \]
\[\Rightarrow c_1 \cdot c_2 = g^{m_1+m_2} \mod N^2 \]

- Fully homomorphic: homomorphic for both addition and multiplication
 - Open problem until Gentry’s breakthrough in 2009.
Fully homomorphic encryption

- Multiplicatively homomorphic: RSA.

 \[c_1 = m_1^e \mod N \]

 \[c_2 = m_2^e \mod N \]

 \[\Rightarrow c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N \]

- Additively homomorphic: Paillier

 \[c_1 = g^{m_1} \mod N^2 \]

 \[c_2 = g^{m_2} \mod N^2 \]

 \[\Rightarrow c_1 \cdot c_2 = g^{m_1+m_2} [N] \mod N^2 \]

- Fully homomorphic: homomorphic for both addition and multiplication

 - Open problem until Gentry's breakthrough in 2009.
Fully homomorphic encryption

- Multiplicatively homomorphic: RSA.
 \[c_1 = m_1^e \mod N \]
 \[c_2 = m_2^e \mod N \]
 \[\Rightarrow c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N \]

- Additively homomorphic: Paillier
 \[c_1 = g^{m_1} \mod N^2 \]
 \[c_2 = g^{m_2} \mod N^2 \]
 \[\Rightarrow c_1 \cdot c_2 = g^{m_1+m_2} [N] \mod N^2 \]

- Fully homomorphic: homomorphic for both addition and multiplication
 - Open problem until Gentry’s breakthrough in 2009.
Fully homomorphic public-key encryption

- We restrict ourselves to public-key encryption of a single bit:
 - 0 → 203ef6124...23ab87_{16}
 - 1 → b327653c1...db3265_{16}
- Obviously, encryption must be probabilistic.

- Fully homomorphic property
 - Given $E(b_0)$ and $E(b_1)$, one can compute $E(b_0 \oplus b_1)$ and $E(b_0 \cdot b_1)$ without knowing the private-key.

- Why is it important?
 - Universality: any Boolean circuit can be written with Xors and Ands.
 - Once you can homomorphically evaluate both a Xor and a And, you can evaluate any Boolean circuit, any computable function.
Fully homomorphic public-key encryption

- We restrict ourselves to public-key encryption of a single bit:
 - $0 \rightarrow 203ef6124 \ldots 23ab87_{16}$
 - $1 \rightarrow b327653c1 \ldots db3265_{16}$
 - Obviously, encryption must be probabilistic.

- Fully homomorphic property
 - Given $E(b_0)$ and $E(b_1)$, one can compute $E(b_0 \oplus b_1)$ and $E(b_0 \cdot b_1)$ without knowing the private-key.

- Why is it important?
 - Universality: any Boolean circuit can be written with Xors and Ands.
 - Once you can homomorphically evaluate both a Xor and a And, you can evaluate any Boolean circuit, any computable function.
Fully homomorphic public-key encryption

- We restrict ourselves to public-key encryption of a single bit:
 - 0 → 203ef6124...23ab87_{16}
 - 1 → b327653c1...db3265_{16}
 - Obviously, encryption must be probabilistic.

- Fully homomorphic property
 - Given $E(b_0)$ and $E(b_1)$, one can compute $E(b_0 \oplus b_1)$ and $E(b_0 \cdot b_1)$ without knowing the private-key.

- Why is it important?
 - Universality: any Boolean circuit can be written with Xors and Ands.
 - Once you can homomorphically evaluate both a Xor and a And, you can evaluate any Boolean circuit, any computable function.
 Outsourcing Computation

- The cloud receives some data m in encrypted form.
 - It receives the ciphertexts c_i corresponding to bits m_i
 - The cloud doesn’t know the m_i’s
- The cloud performs some computation $f(m)$, but without knowing m
 - The computation of f is written as a Boolean circuit with Xors and Ands
 - Every Xor $z = x \oplus y$ is homomorphically evaluated from the ciphertexts c_x and c_y, to get ciphertext c_z
 - Every And $z' = x \cdot y$ is homomorphically evaluated from the ciphertexts c_x and c_y, to get ciphertext $c_{z'}$
- Eventually the cloud obtains a ciphertext c for $f(m)$
 - The user decrypts c to recover $f(m)$
 - The cloud learns nothing about m
Outsourcing Computation

- The cloud receives some data \(m \) in encrypted form.
 - It receives the ciphertexts \(c_i \) corresponding to bits \(m_i \)
 - The cloud doesn’t know the \(m_i \)’s
- The cloud performs some computation \(f(m) \), but without knowing \(m \)
 - The computation of \(f \) is written as a Boolean circuit with Xors and Ands
 - Every Xor \(z = x \oplus y \) is homomorphically evaluated from the ciphertexts \(c_x \) and \(c_y \), to get ciphertext \(c_z \)
 - Every And \(z' = x \cdot y \) is homomorphically evaluated from the ciphertexts \(c_x \) and \(c_y \), to get ciphertext \(c_{z'} \)
- Eventually the cloud obtains a ciphertext \(c \) for \(f(m) \)
 - The user decrypts \(c \) to recover \(f(m) \)
 - The cloud learns nothing about \(m \)
Outsourcing Computation

- The cloud receives some data m in encrypted form.
 - It receives the ciphertexts c_i corresponding to bits m_i
 - The cloud doesn’t know the m_i’s
- The cloud performs some computation $f(m)$, but without knowing m
 - The computation of f is written as a Boolean circuit with Xors and Ands
 - Every Xor $z = x \oplus y$ is homomorphically evaluated from the ciphertexts c_x and c_y, to get ciphertext c_z
 - Every And $z' = x \cdot y$ is homomorphically evaluated from the ciphertexts c_x and c_y, to get ciphertext $c_{z'}$
- Eventually the cloud obtains a ciphertext c for $f(m)$
 - The user decrypts c to recover $f(m)$
 - The cloud learns nothing about m
What fully homomorphic encryption brings you

- You have a software that given the revenue, past income, headcount, etc., of a company can predict its future stock price.
 - I want to know the future stock price of my company, but I don’t want to disclose confidential information.
 - And you don’t want to give me your software containing secret formulas.

- Using homomorphic encryption:
 - I encrypt all the inputs using fully homomorphic encryption and send them to you in encrypted form.
 - You process all my inputs, viewing your software as a circuit.
 - You send me the result, still encrypted.
 - I decrypt the result and get the predicted stock price.
 - You didn’t learn any information about my company.

- More generally:
 - Cool buzzwords like secure cloud computing.
 - Cool mathematical challenges.
What fully homomorphic encryption brings you

- You have a software that given the revenue, past income, headcount, etc., of a company can predict its future stock price.
 - I want to know the future stock price of my company, but I don’t want to disclose confidential information.
 - And you don’t want to give me your software containing secret formulas.

- Using homomorphic encryption:
 - I encrypt all the inputs using fully homomorphic encryption and send them to you in encrypted form.
 - You process all my inputs, viewing your software as a circuit.
 - You send me the result, still encrypted.
 - I decrypt the result and get the predicted stock price.
 - You didn’t learn any information about my company.

- More generally:
 - Cool buzzwords like secure cloud computing.
 - Cool mathematical challenges.
What fully homomorphic encryption brings you

- You have a software that given the revenue, past income, headcount, etc., of a company can predict its future stock price.
 - I want to know the future stock price of my company, but I don’t want to disclose confidential information.
 - And you don’t want to give me your software containing secret formulas.

- Using homomorphic encryption:
 - I encrypt all the inputs using fully homomorphic encryption and send them to you in encrypted form.
 - You process all my inputs, viewing your software as a circuit.
 - You send me the result, still encrypted.
 - I decrypt the result and get the predicted stock price.
 - You didn’t learn any information about my company.

- More generally:
 - Cool buzzwords like secure cloud computing.
 - Cool mathematical challenges.
Cloud Computing

- Goal: cloud computing
 - I encrypt my data before sending it to the cloud
 - The cloud can still search, sort and edit my data on my behalf
 - Data is kept in encrypted form in the cloud.
 - The cloud learns nothing about my data
- The cloud returns encrypted answers
 - that only I can decrypt
Fully Homomorphic Encryption Schemes

1. Breakthrough scheme of Gentry [G09], based on ideal lattices. Some optimizations by [SV10].
 - Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

2. RLWE schemes [BV11a,BV11b].
 - FHE without bootstrapping (modulus switching) [BGV11]
 - Batch FHE [GHS12]
 - Implementation with homomorphic evaluation of AES [GHS12]
 - And many other papers...

3. van Dijk, Gentry, Halevi and Vaikuntanathan’s scheme over the integers [DGHV10].
 - Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
 - Public-key compression and modulus switching [CNT12]
 - Batch and homomorphic evaluation of AES [CCKLLTY13].
Fully Homomorphic Encryption Schemes

1. Breakthrough scheme of Gentry [G09], based on ideal lattices. Some optimizations by [SV10].
 - Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

2. RLWE schemes [BV11a, BV11b].
 - FHE without bootstrapping (modulus switching) [BGV11]
 - Batch FHE [GHS12]
 - Implementation with homomorphic evaluation of AES [GHS12]
 - And many other papers...

3. van Dijk, Gentry, Halevi and Vaikuntanathan’s scheme over the integers [DGHV10].
 - Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
 - Public-key compression and modulus switching [CNT12]
 - Batch and homomorphic evaluation of AES [CCKLLTY13]
Fully Homomorphic Encryption Schemes

- 1. Breakthrough scheme of Gentry [G09], based on ideal lattices. Some optimizations by [SV10].
 - Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

- 2. RLWE schemes [BV11a, BV11b].
 - FHE without bootstrapping (modulus switching) [BGV11]
 - Batch FHE [GHS12]
 - Implementation with homomorphic evaluation of AES [GHS12]
 - And many other papers...

- 3. van Dijk, Gentry, Halevi and Vaikuntanathan’s scheme over the integers [DGHV10].
 - Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
 - Public-key compression and modulus switching [CNT12]
 - Batch and homomorphic evaluation of AES [CCKLLTY13].
The DGHV Scheme

- Ciphertext for $m \in \{0, 1\}$:

$$c = q \cdot p + 2r + m$$

where p is the secret-key, q and r are randoms.

- Decryption:

$$(c \mod p) \mod 2 = m$$

- Parameters:

- $\gamma \approx 2 \cdot 10^7$ bits
- $p : \eta \approx 2700$ bits
- $r : \rho \approx 71$ bits
The DGHV Scheme

- Ciphertext for \(m \in \{0, 1\} \):
 \[
 c = q \cdot p + 2r + m
 \]
 where \(p \) is the secret-key, \(q \) and \(r \) are randoms.
- Decryption:
 \[
 (c \mod p) \mod 2 = m
 \]
- Parameters:
 - \(\gamma \simeq 2 \cdot 10^7 \) bits
 - \(p : \eta \simeq 2700 \) bits
 - \(r : \rho \simeq 71 \) bits
The DGHV Scheme

- Ciphertext for \(m \in \{0, 1\} \):
 \[
 c = q \cdot p + 2r + m
 \]
 where \(p \) is the secret-key, \(q \) and \(r \) are randoms.

- Decryption:
 \[
 (c \mod p) \mod 2 = m
 \]

- Parameters:
 \[
 \gamma \simeq 2 \cdot 10^7 \text{ bits}
 \]
 \[
 p : \eta \simeq 2700 \text{ bits}
 \]
 \[
 r : \rho \simeq 71 \text{ bits}
 \]
Homomorphic Properties of DGHV

- **Addition:**

\[
c_1 = q_1 \cdot p + 2r_1 + m_1 \\
c_2 = q_2 \cdot p + 2r_2 + m_2
\]

\[
\Rightarrow c_1 + c_2 = q' \cdot p + 2r' + m_1 + m_2
\]

- \(c_1 + c_2\) is an encryption of \(m_1 + m_2 \mod 2 = m_1 \oplus m_2\)

- **Multiplication:**

\[
c_1 = q_1 \cdot p + 2r_1 + m_1 \\
c_2 = q_2 \cdot p + 2r_2 + m_2
\]

\[
\Rightarrow c_1 \cdot c_2 = q'' \cdot p + 2r'' + m_1 \cdot m_2
\]

with

\[
r'' = 2r_1 r_2 + r_1 m_2 + r_2 m_1
\]

- \(c_1 \cdot c_2\) is an encryption of \(m_1 \cdot m_2\)
- Noise becomes twice larger.
Homomorphic Properties of DGHV

- Addition:
 \[c_1 = q_1 \cdot p + 2r_1 + m_1 \]
 \[c_2 = q_2 \cdot p + 2r_2 + m_2 \]
 \[\Rightarrow c_1 + c_2 = q' \cdot p + 2r' + m_1 + m_2 \]

 - \(c_1 + c_2 \) is an encryption of \(m_1 + m_2 \) mod 2 = \(m_1 \oplus m_2 \)

- Multiplication:
 \[c_1 = q_1 \cdot p + 2r_1 + m_1 \]
 \[c_2 = q_2 \cdot p + 2r_2 + m_2 \]
 \[\Rightarrow c_1 \cdot c_2 = q'' \cdot p + 2r'' + m_1 \cdot m_2 \]

 with
 \[
 r'' = 2r_1 r_2 + r_1 m_2 + r_2 m_1
 \]

 - \(c_1 \cdot c_2 \) is an encryption of \(m_1 \cdot m_2 \)
 - Noise becomes twice larger.
Somewhat homomorphic scheme

- The number of multiplications is limited.
 - Noise grows with the number of multiplications.
 - Noise must remain $< p$ for correct decryption.
Gentry’s technique

• To build a FHE scheme, start from the somewhat homomorphic scheme, that is:
 • Only a polynomial of small degree can be homomorphically applied on ciphertexts.
 • Otherwise the noise becomes too large and decryption becomes incorrect.

• Then, “squash” the decryption procedure:
 • express the decryption function as a low degree polynomial in the bits of the ciphertext c and the secret key sk (equivalently a boolean circuit of small depth).
Gentry’s technique

- To build a FHE scheme, start from the somewhat homomorphic scheme, that is:
 - Only a polynomial of small degree can be homomorphically applied on ciphertexts.
 - Otherwise the noise becomes too large and decryption becomes incorrect.
- Then, “squash” the decryption procedure:
 - express the decryption function as a low degree polynomial in the bits of the ciphertext c and the secret key sk (equivalently a boolean circuit of small depth).
Ciphertext refresh: bootstrapping

- Gentry’s breakthrough idea: refresh the ciphertext using the decryption circuit homomorphically.
- Evaluate the decryption polynomial not on the bits of the ciphertext c and the secret key sk, but homomorphically on the encryption of those bits.
- Instead of recovering the bit plaintext m, one gets an encryption of this bit plaintext, i.e. yet another ciphertext for the same plaintext.
Ciphertext refresh

- **Refreshed ciphertext:**
 - If the degree of the decryption polynomial is small enough, the resulting noise in this new ciphertext can be smaller than in the original ciphertext

- **Fully homomorphic encryption:**
 - Given two refreshed ciphertexts one can apply again the homomorphic operation (either addition or multiplication), which was not necessarily possible on the original ciphertexts because of the noise threshold.
 - Using this “ciphertext refresh” procedure the number of homomorphic operations becomes unlimited and we get a fully homomorphic encryption scheme.
Ciphertext refresh

- Refreshed ciphertext:
 - If the degree of the decryption polynomial is small enough, the resulting noise in this new ciphertext can be smaller than in the original ciphertext

- Fully homomorphic encryption:
 - Given two refreshed ciphertexts one can apply again the homomorphic operation (either addition or multiplication), which was not necessarily possible on the original ciphertexts because of the noise threshold.
 - Using this “ciphertext refresh” procedure the number of homomorphic operations becomes unlimited and we get a fully homomorphic encryption scheme.
Public-key Encryption with DGHV

- **Ciphertext**
 \[c = q \cdot p + 2r + m \]

- **Public-key: a set of \(\tau \) encryptions of 0's.**
 \[x_i = q_i \cdot p + 2r_i \]

- **Public-key encryption:**
 \[c = m + 2r + \sum_{i=1}^{\tau} \varepsilon_i \cdot x_i \]
 for random \(\varepsilon_i \in \{0, 1\} \).
Public-key Encryption with DGHV

- **Ciphertext**
 \[c = q \cdot p + 2r + m \]

- **Public-key:** a set of \(\tau \) encryptions of 0's.
 \[x_i = q_i \cdot p + 2r_i \]

- **Public-key encryption:**
 \[c = m + 2r + \sum_{i=1}^{\tau} \varepsilon_i \cdot x_i \]
 for random \(\varepsilon_i \in \{0, 1\} \).
Public-key Encryption with DGHV

- Ciphertext
 \[c = q \cdot p + 2r + m \]

- Public-key: a set of \(\tau \) encryptions of 0's.
 \[x_i = q_i \cdot p + 2r_i \]

- Public-key encryption:
 \[c = m + 2r + \sum_{i=1}^{\tau} \varepsilon_i \cdot x_i \]

for random \(\varepsilon_i \in \{0, 1\} \).
The squashed scheme from DGHV

- The basic decryption \(m \leftarrow (c \mod p) \mod 2 \) cannot be directly expressed as a boolean circuit of low depth.

- Alternative decryption formula for \(c = q \cdot p + 2r + m \):
 - We have \(q = \lfloor c/p \rfloor \) and \(c = q + m \pmod{2} \)
 - Therefore
 \[
 m \leftarrow \lfloor c \rfloor \oplus \lfloor c \cdot (1/p) \rfloor
 \]

- Idea (Gentry, DGHV). Secret-share \(1/p \) as a sparse subset sum:
 \[
 1/p = \sum_{i=1}^{\Theta} s_i \cdot y_i + \varepsilon
 \]
The squashed scheme from DGHV

- The basic decryption $m \leftarrow (c \mod p) \mod 2$ cannot be directly expressed as a boolean circuit of low depth.
- Alternative decryption formula for $c = q \cdot p + 2r + m$
 - We have $q = \lfloor c/p \rfloor$ and $c = q + m \pmod 2$
 - Therefore
 $$m \leftarrow [c]_2 \oplus \lfloor c \cdot (1/p) \rfloor_2$$

- Idea (Gentry, DGHV). Secret-share $1/p$ as a sparse subset sum:
 $$1/p = \sum_{i=1}^{\Theta} s_i \cdot y_i + \varepsilon$$
The squashed scheme from DGHV

- The basic decryption $m \leftarrow (c \mod p) \mod 2$ cannot be directly expressed as a boolean circuit of low depth.
- Alternative decryption formula for $c = q \cdot p + 2r + m$
 - We have $q = \lfloor c/p \rfloor$ and $c = q + m \mod 2$
 - Therefore
 $$m \leftarrow [c]_2 \oplus [\lfloor c \cdot (1/p) \rfloor]_2$$
- Idea (Gentry, DGHV). Secret-share $1/p$ as a sparse subset sum:
 $$1/p = \sum_{i=1}^{\Theta} s_i \cdot y_i + \varepsilon$$
Squashed decryption

- Alternative equation

\[m \leftarrow [c]_2 \oplus [\lfloor c \cdot (1/p) \rfloor]_2 \]

- Secret-share \(1/p\) as a sparse subset sum:

\[
\frac{1}{p} = \sum_{i=1}^{\Theta} s_i \cdot y_i + \varepsilon
\]

with random public \(\kappa\)-bit numbers \(y_i\), and sparse secret \(s_i \in \{0, 1\}\).

- Decryption becomes:

\[
m \leftarrow [c]_2 \oplus \left[\sum_{i=1}^{\Theta} s_i \cdot (y_i \cdot c) \right]_2
\]
Squashed decryption

- Alternative equation

\[m \leftarrow [c]_2 \oplus \left[\left\lfloor c \cdot \left(\frac{1}{p} \right) \right\rfloor \right]_2 \]

- Secret-share \(\frac{1}{p} \) as a sparse subset sum:

\[
\frac{1}{p} = \sum_{i=1}^{\Theta} s_i \cdot y_i + \varepsilon
\]

with random public \(\kappa \)-bit numbers \(y_i \), and sparse secret \(s_i \in \{0, 1\} \).

- Decryption becomes:

\[m \leftarrow [c]_2 \oplus \left[\left\lfloor \sum_{i=1}^{\Theta} s_i \cdot (y_i \cdot c) \right\rfloor \right]_2 \]
Squashed decryption

- Alternative equation

\[m \leftarrow [c]_2 \oplus \lceil c \cdot (1/p) \rceil_2 \]

- Secret-share \(1/p \) as a sparse subset sum:

\[
\frac{1}{p} = \sum_{i=1}^{\Theta} s_i \cdot y_i + \varepsilon
\]

with random public \(\kappa \)-bit numbers \(y_i \), and sparse secret \(s_i \in \{0, 1\} \).

- Decryption becomes:

\[
m \leftarrow [c]_2 \oplus \left\lceil \sum_{i=1}^{\Theta} s_i \cdot (y_i \cdot c) \right\rceil_2
\]
Squashed decryption

- Alternative decryption equation:

\[m \leftarrow [c]_2 \oplus \left[\sum_{i=1}^{\Theta} s_i \cdot z_i \right]_2 \]

where \(z_i = y_i \cdot c \) for public \(y_i \)'s

- Since \(s_i \) is sparse with \(H(s_i) = \theta \), only \(n = \lceil \log_2(\theta + 1) \rceil \) bits of precision for \(z_i = y_i \cdot c \) is required
 - With \(\theta = 15 \), only \(n = 4 \) bits of precision for \(z_i = y_i \cdot c \)

- The decryption function can then be expressed as a polynomial of low degree (30) in the \(s_i \)'s.
The decryption circuit
Grade School addition

- The decryption equation is now:

\[m \leftarrow c^* - \left[\sum_{k=1}^{\theta} q_k \right] \pmod{2} \]

- where the \(q_k \)'s are rational in \([0, 2)\) with \(n \) bits of precision after the binary point.
Gentry’s Bootstrapping

• The decryption circuit
 • Can now be expressed as a polynomial of small degree d in the secret-key bits s_i, given the $z_i = c \cdot y_i$.

 $$m = C_{z_i}(s_1, \ldots, s_{\Theta})$$

• To refresh a ciphertext:
 • Publish an encryption of the secret-key bits $\sigma_i = E_{pk}(s_i)$
 • Homomorphically evaluate $m = C_{z_i}(s_1, \ldots, s_{\Theta})$, using the encryptions $\sigma_i = E_{pk}(s_i)$
 • We get $E_{pk}(m)$, that is a new ciphertext but possibly with less noise (a “recryption”).
 • The new noise has size $\simeq d \cdot \rho$ and is independent of the initial noise.
Parameters and Timings

PK size and timings

<table>
<thead>
<tr>
<th>Instance</th>
<th>λ</th>
<th>ρ</th>
<th>η</th>
<th>γ</th>
<th>pk size</th>
<th>Recrypt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toy</td>
<td>42</td>
<td>27</td>
<td>1026</td>
<td>150 \cdot 10^3</td>
<td>77 KB</td>
<td>0.41 s</td>
</tr>
<tr>
<td>Small</td>
<td>52</td>
<td>41</td>
<td>1558</td>
<td>830 \cdot 10^3</td>
<td>437 KB</td>
<td>4.5 s</td>
</tr>
<tr>
<td>Medium</td>
<td>62</td>
<td>56</td>
<td>2128</td>
<td>4.2 \cdot 10^6</td>
<td>2.2 MB</td>
<td>51 s</td>
</tr>
<tr>
<td>Large</td>
<td>72</td>
<td>71</td>
<td>2698</td>
<td>19 \cdot 10^6</td>
<td>10.3 MB</td>
<td>11 min</td>
</tr>
</tbody>
</table>
Conclusion

- Fully homomorphic encryption is a very active research area.
- Main challenge: make FHE practical!
- Recent developments
 - FHE without bootstrapping (modulus switching) [BGV11]
 - Batch FHE [GHS12]
 - Implementation with homomorphic evaluation of AES [GHS12]
 - FHE based on matrix addition and multiplication [GSW13]
 - HElib: FHE library of Halevi and Shoup [HS14]
 - Faster Bootstrapping [AP13,AP14,DM15]