

Cryptographic implementation using Ferroelectric transistor

<u>Cédric Marchand</u>, Ian O'Connor, Stefan Slesazeck, Thomas Mikolajick

Journée thématique du GDR

- 1. Introduction
- 2. Ferroelectric field effect transistor
- 3. TC-MEM memory and Sbox implementation
- 4. Non-volatile logic gates and operators for security
- 5. Conclusion

1. Introduction

- 2. Ferroelectric field effect transistor
- 3. TC-MEM memory and Sbox implementation
- 4. Non-volatile logic gates and operators for security
- 5. Conclusion

Context (Classical computing architectures)

- Von Neumann Architecture/ Harvard Architecture
 - Data transfert congestion

Limit performances and energy efficiency

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Journée thématique du GDR - 12/10/2022

Sensor node security

Institut des Nanotechnologies de Lyon UMR CNRS 5270

- Emerging and CMOS compatible Non-Volatile memory technologies:
 - New non-volatile logic capabilities
 - Logic in memory
- Opportunity to change the Hardware architectures of computing unit to include Non-Volatile structures:
 - Memory array with computing capabilities
 - Programmable logic gate
 - Custom logic operation with non-volatile operand(s)
- Concept of near-sensor cryptography using non-volatile operations in the pre-processing unit

Non-volatile emerging technologies opportunities

- Add a low-cost security layer in the preprocessing Unit :
 - Use emerging technologies (FeFet for example) to implement part of cryptographic operations inside the preprocessing Unit (Sbox, constant matrix multiplication, ...)
 - → In-Memory-Computing can play a role
 - → Emerging TCAM design → possibility to create a hybrid memory (TCAM and MEM) : the TC-MEM

Agenda

- 1. Introduction
- 2. Ferroelectric field effect transistor
- 3. TC-MEM memory and Sbox implementation
- 4. Non-volatile logic gates and operators for security
- 5. Conclusion

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Ferroelectric Field Effect Transistor

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Journée thématique du GDR - 12/10/2022

FeFET : single transistor characteristics

in

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Journée thématique du GDR - 12/10/2022

http://inl.cnrs.fr

FeFET : single transistor characteristics

inl

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Journée thématique du GDR - 12/10/2022

http://inl.cnrs.fr

1. Introduction

- 2. Ferroelectric field effect transistor
- **3**. TC-MEM memory and Sbox implementation
- 4. Non-volatile logic gates and operators for security
- 5. Conclusion

TC-MEM

- New design bloc:
 - TCAM : Ternary content addressable memory
 - MEM: classical memory addressable by address

 V_{dd}

¹ X. Yin, K. Ni, D. Reis, S. Datta, M. Niemier and X. S. Hu, "An Ultra-Dense 2FeFET TCAM Design Based on a Multi-Domain FeFET Model," in *IEEE Transactions on Circuits and Systems II: Express Briefs*, vol. 66, no. 9, pp. 1577-1581, Sept. 2019, doi: 10.1109/TCSII.2018.2889225.

²C. Marchand, I. O'Connor, M. Cantan, E. T. Breyer, S. Slesazeck and T. Mikolajick, "A FeFET-Based Hybrid Memory Accessible by Content and by Address," in IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, vol. 8, no. 1, pp. 19-26, June 2022, doi: 10.1109/JXCDC.2022.3168057.

Institut des Nanotechnologies de Lyon UMR CNRS 5270

TC-MEM

• When the bit is read, $V_1 = 1 \Rightarrow V_0 = \overline{1.\overline{S}} = S$

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Journée thématique du GDR - 12/10/2022

TC-MEM

• M = 1 : TCAM mode

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Journée thématique du GDR - 12/10/2022

TC-MEM (chip measurement)

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Journée thématique du GDR - 12/10/2022

http://inl.cnrs.fr

TC MEM 1st generation

Serial connection problem :

- Programming in TCAM mode:
 - Left FeFET powered
 - Upper FeFET connected to V_{dd} from drain and source
- Consequence :
 - The upper left FeFET remains un-program in some cases.
- Possible solution :
 - Bring a possible separation between the bitcell.

TC MEM 1st generation

• Cannot program $FeFET_0$ (connected to V_0)

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Journée thématique du GDR - 12/10/2022

http://inl.cnrs.fr

TC MEM 1st generation

• Cannot program $FeFET_0$ (connected to V_0)

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Journée thématique du GDR – 12/10/2022

http://inl.cnrs.fr

TC MEM 2nd generation

New scaling circuit :

- Programming the bitcells:
 - TCAM Mode
 - T=1 and C=0
- → Ensure disconnected bitcells and proper programming
- Existence of forbidden state:
 - M = T = C = 0 Floating node
 - $M = 1, T = C = 0 \int \Gamma D d ling Hode$
 - M = 0, T = C = 1• M = T = C = 1Possible but useless
 - $\rightarrow T = \overline{C}$
 - \rightarrow 4 remaining utilizations :
 - → Memory
 - \rightarrow TCAM
 - \rightarrow Bitwise Xor
 - \rightarrow Memory with connected bits ?

TC MEM other solutions

Memory mode : 2-bit fully separated

TCEM separated - Memory

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Journée thématique du GDR – 12/10/2022

http://inl.cnrs.fr

Memory mode : 2-bit parallelly connected

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Memory mode : 2-bit serially connected

TCAM mode : 2-bit fully separated

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Journée thématique du GDR - 12/10/2022

http://inl.cnrs.fr

TCAM mode : 2-bit parallelly connected

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Journée thématique du GDR - 12/10/2022

TCAM mode : 2-bit serially connected

Comparison and discussion

Memory Mode

Circuit	HW 0	HW 1	HW 2	HW dependency	Order
2-bit separated	$2,70e^{-13}$	1,13e ⁻¹³	2,89 <i>e</i> ⁻¹⁶	Yes	3
2-bit parallel	$2,71e^{-13}$	$1,17e^{-13}$	2,91 <i>e</i> ⁻¹⁴	Yes	1
2-bit serial	3,63 <i>e</i> ⁻¹³	2,22 <i>e</i> ⁻¹³	9,59 <i>e</i> ⁻¹⁴	Yes	<1

TCAM Mode

Circuit	No match	Partial Match WL1	Partial Match WL0	Full Match	Depen dency
2-bit separated	$4,04e^{-16}$	$1,05e^{-13}$	9,67 <i>e</i> ⁻¹⁴	2,59 <i>e</i> ⁻¹³	+ (<1)
2-bit parallel	2,68 <i>e</i> ⁻¹³	$2,53e^{-13}$	$2,40e^{-13}$	4,69 <i>e</i> ⁻¹⁶	++ (3)
2-bit serial	8,11 <i>e</i> ⁻¹⁶	$7,69e^{-14}$	1,55e ⁻¹³	1,55e ⁻¹³	-

TC-MEM array (4-bit Sbox implementation)

Match line		Shared (1)	Separated (n)
Search time		1 address per clock cycle	1 clock cycle
Implementation constraint		RNG (security purpose) + counter, time constant ?	-
Input Controller	area	Medium	small
Output Controller	area	Small	high
Energy consumption		Variable to constant	High but constant

Photon-Beetle Sbox

TCAM mode ($Sbox^{-1}$) : Shared ML, search value = 0

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Journée thématique du GDR - 12/10/2022

1. Introduction

- 2. Ferroelectric field effect transistor
- 3. TC-MEM memory and Sbox implementation
- 4. Non-volatile logic gates and operators for security
- 5. Conclusion

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Hardware desing

- We define a non-volatile logic gate
 → with one input A and one output Y;
- This gate perform a logical function symbolised with the operator ∘ (·, +, ⊕);
- It contains a preprogrammed value X include in $GF(2) = \{0,1\}$ and perform the following operation :

$$Q = A \circ X;$$

• Its symbol is :

Hardware desing

• AND gate :

$$A - \boxed{X} \qquad Q = A.X$$

• OR gate :

• XOR gate :

Non-volatile GF(2⁴) adder

 Adding in GF(2^m) corresponds to a bit XORing

Fig. 2 : Porte XOR en FeFET¹

Fig. 3 : Non-volatile adder.

¹C. Marchand, I. O'Connor, M. Cantan, E. T. Breyery, S. Slesazecky and T. Mikolajick, "FeFET based Logic-in-Memory: an overview", DTIS 2021.

GF(2⁴) multiplier

- Two architectures possible:
 - Combinatory (need more component)
 - Sequencial (with a complexity depending of the size-bit; O(n)

Fig. 4 : 1-bit Galois field multiplier¹.

¹P. A. Scott, S. E. Tavares, L. E. Peppard, "A Fast VLSI Multiplier for GF(2^m)", *IEEE Journal on Selected Areas in Communications*, Vol. 4, Issue 1, January 1986.

Non-Volatile GF(2⁴) multiplier

- Store irreductible polynomial
- Store one constante ?

Fig. 5 : Porte AND en FeFET

Fig. 6 : 1-bit Galois field multiplier

Conclusion

The TC-MEM:

- 1. New memory circuit accessible by address and by content
- 2. Can be used to implement cryptographic Sbox with high area and energy efficiency
- 3. Serial implementation seems to be more interesting for security

Non-volatile logic gates :

- 1. Can be used to implement specific operation storing constants :
 - 1. Adder
 - 2. Multiplier, ...

Future works :

- 1. Implement all these operations in a RISC-V environment
- 2. Design an ASIC to validate and evaluate the operators

3.

Thank you for your attention

This work has been carried out using the framework of the SECRET project supported by the French "Agence Nationale de la Recherche" under project number ANR-20-CE39-0006.

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Journée thématique du GDR - 12/10/2022