
Assessing Side-Channel
Leakages

Simulating Traces
with Open-Source Tools

Mateus Simões1, 2, Lilian Bossuet2, Nicolas Bruneau1,

Vincent Grosso2, Patrick Haddad1, Thomas Sarno1

1 STMicroelectronics, 13106 Rousset, France
2 Laboratoire Hubert Curien, CNRS, 42000 Saint-Étienne, France

November 13, 2023

+ Masking is a strong countermeasure against side-channel attacks.

+ The security increases exponentially with each additional share.

+ To reveal the secret, it is ideal to possess knowledge of all the shares.

- While the principle may seem simple and effective, the practical

implementation of masking can be complex and challenging.

Masking¹ divides the secret into

various random shares.

Let us consider secret data,

such as the private key.

After computing, we can combine

the shares to reveal the secret.

Hardware masking against side-channel attacks

The design process may introduce

side-channel vulnerabilities.

¹ L. Goubin et al. “DES and Differential Power Analysis (The "Duplication" Method)”. In CHES 1999.

secret ← the private key
share_1 ← random
share_2 ← secret ⊕ share_1

secret = share_1 ⊕ share_2

2

It is not straightforward.

The Trichina’s multiplication gadget¹

To protect 𝑨 and 𝑩, they are each divided into two shares, (𝒂𝟎, 𝒂𝟏) and (𝒃𝟎, 𝒃𝟏), and an additional random

bit, 𝒓, is needed for the process.

Secure under the

probing model…

… but vulnerable in the

presence of glitches.

3¹ E. Trichina. “Combinational Logic Design for AES SubByte Transformation on Masked”. In IACR Cryptol. ePrint 2003.

Due to gate-level delays,

glitches occur and might

reveal the secret variable.

Masking security verification processes

4

Manual verification is both prone to errors and time-consuming,

thereby posing a challenge for scaling up to larger systems.

Gadget-level verification tools have limited capability to assess

the security of complex systems, such as algorithmic masking.

EDA tools provide a range of features and functionalities to

assess the side-channel leakages of masking implementations.

Verification of theoretic security levels may not be feasible in certain cases.
Verify information-
theoretic conditions

Pre-silicon leakage
assessment

Manufacturing

Post-silicon validation

Summary

5

How to evaluate the security of complex masking implementations using (open-source) EDA tools ?

Physical hazards – e.g., glitches – are source of exploitable side-channel leakages¹.

The shares must be statistically independent to compose several masked sub-blocks effectively.

An inaccurate leakage model may result in vulnerable designs.

¹ S. Mangard et al. “Side-Channel Leakage of Masked CMOS Gates”. In CR-RSA 2005.

Verifying security on complex systems with algorithmic-level hardware masking can be challenging.

The open-source HDL compiler solutions

do not offer full SDF support.

The (quasi-open-source) design flow

6

RTL Files

Yosys

OpenSTA

Synthesis & STA

Icarus
Verilog

Logic simulation

Netlist

SDF File

Gate-level
Simulation

Traces

Parse VCD files

Open Cell Metadata

VCD File

VCD Parser

SCALib

Results

SNR
𝑡-test

Attacks
Key ranking

Testbench

The open-source HDL compiler solutions

do not offer full SDF support.

The (quasi-open-source) design flow

7

RTL Files

Yosys

OpenSTA

Synthesis & STA

Icarus
Verilog

Logic simulation

Netlist

SDF File

Gate-level
Simulation

Traces

Parse VCD files

Open Cell Metadata

VCD File

VCD Parser

SCALib

Results

SNR
𝑡-test

Attacks
Key ranking

Testbench

Logic simulation

Key applications

• Hardware description language compiler.

• Logic simulation with VPI.

• Behavioral validation.

Icarus Verilog Open Source

8

module hello;
initial begin
$display("Hello, World");
$finish;
end
endmodule

hello.v

> iverilog –o hello hello.v
> vvp hello
Hello, World

Terminal

S. Williams. “The ICARUS Verilog Compilation”. In GitHub: Icarus Verilog

RTL Files

Testbench

Icarus
Verilog

correct?

PASS

FAIL

yes

no

https://github.com/steveicarus/iverilog

The open-source HDL compiler solutions

do not offer full SDF support.

The (quasi-open-source) design flow

9

RTL Files

Yosys

OpenSTA

Synthesis & STA

Icarus
Verilog

Logic simulation

Netlist

SDF File

Gate-level
Simulation

Traces

Parse VCD files

Open Cell Metadata

VCD File

VCD Parser

SCALib

Results

SNR
𝑡-test

Attacks
Key ranking

Testbench

read design
read_verilog mydesign.v

generic synthesis
synth -top mytop

mapping library cells
dfflibmap -liberty mycells.lib
abc -liberty mycells.lib
clean

write synthesized design
write_verilog synth.v

Verilog RTL synthesis

Key applications

• Process almost any synthesizable Verilog-

2005 design.

• Mapping to ASIC standard cell libraries.

• Design reports.

Yosys Open Synthesis Suite Open Source

10C. Wolf. “Yosys Open SYnthesis Suite”. In https://yosyshq.net/yosys/

RTL Files Cells

Yosys

Netlist

https://yosyshq.net/yosys/

read library cells
read_liberty mycells.lib

read design
read_verilog mydesign.v
link_design mydesign
create_clock -period 10 clock_i

report timing
report_checks > timing.log

write sdf file
write_sdf mydesign.sdf

Static Timing Analysis (STA)

Key applications

• Verify the timing of a design using

standard file formats.

• Generate gate-level delay files (SDF).

• Timing reports.

OpenSTA: Parallax Static Timing Analyzer Open Source

11J. Cherry. “OpenSTA: Parallax Static Timing Analyzer”. In GitHub: OpenSTA

Netlist Cells

OpenSTA

SDF File

https://github.com/parallaxsw/OpenSTA

The open-source HDL compiler solutions

do not offer full SDF support.

The (quasi-open-source) design flow

12

RTL Files

Yosys

OpenSTA

Synthesis & STA

Icarus
Verilog

Logic simulation

Netlist

SDF File

Gate-level
Simulation

Traces

Parse VCD files

Open Cell Metadata

VCD File

VCD Parser

SCALib

Results

SNR
𝑡-test

Attacks
Key ranking

Testbench

Gate-level simulation with open-source tools

Poor support for SDF back-

annotation.

SDF back-annotation is necessary to take glitches into account.

There is better support for SDF back-

annotation, but it is still limited.

There is a complete lack of support

for this feature.

Icarus Verilog1 Tachyon DA's CVC2 Verilator3

13

Hence, we rely on commercial tools for this gate-level task.

Gate-level verification

Key applications

• SDF back-annotation.

• Post-synthesis verification.

• VCD generation.

Gate-level simulation with back-annotated delay Commercial

14

module device_tb;
device DUT(…);
initial begin
$sdf_annotate(“delay.sdf”, DUT);
end
endmodule

device_tb.v

Nestlist

Logic Cells

Testbench

Gate-level
Simulation

SDF File

Metadata

VCD File

S1

S2

S3

S4

!start

start

!done

done

$dumpon

$dumpoff

The open-source HDL compiler solutions

do not offer full SDF support.

The (quasi-open-source) design flow

15

RTL Files

Yosys

OpenSTA

Synthesis & STA

Icarus
Verilog

Logic simulation

Netlist

SDF File

Gate-level
Simulation

Traces

Parse VCD files

Open Cell Metadata

VCD File

VCD Parser

SCALib

Results

SNR
𝑡-test

Attacks
Key ranking

Testbench

Toggle count

16

VCD File Metadata

#1000

$dumpon

1!

0“

#1015

1#

#1037

1$

0%

0&

#1043

0#

#1049

$dumpoff

tag input

0 random

0 random

0 random

1 fixed

1 fixed

0 random

0 random

1 fixed

…

ps
1000

0

1

1015 1037 1043 1049

Value
change

2

3

VCD File

Metadata

Parser

Traces

from scalib.metrics import Ttest
import numpy as np
traces = open(“simulation.traces”)
tag = open(“metadata.txt”)

ttest = Ttest(1000, d=3)
ttest.fit_u(traces, tag)
t = ttest.get_ttest()

plot(t)

The Side-Channel Analysis Library (SCALib)

Key applications

• High performance leakage assessment.

• Metrics, modeling and attacks.

• On-the-fly computation with a streaming

API.

SCALib: state-of-the-art tools for side-channel evaluation Python Package

17G. Cassiers and O. Bronchain. “SCALib: A Side-Channel Analysis Library”. In GitHub: SCALib

Traces

SCALib

Metrics

https://github.com/simple-crypto/SCALib

The TVLA procedure to identify exploitable side-channel leakages in as masking implementation.

Unprotected PRESENT
[FAIL]

2-share masked PRESENT
[PASS]

Welch’s 𝒕-test

Test-vector leakage assessment (TVLA¹)

18

Gate-level

Simulation

Toggle

Counter

Simulated

side-channel

traces

𝑡 =
𝜇0 − 𝜇1

𝑣0
𝑛0

+
𝑣1
𝑛1

[PASS] if 𝑡 < 4.5

[FAIL] if |𝑡| ≥ 4.5

¹ G. Goodwill et al. “A testing methodology for side-channel resistance validation”. In NIST Workshop 2011.

Conclusion and perspectives

Pros

+ A (close to) open-source design flow.

+ Logic simulation with Icarus Verilog or Verilator.

+ Synthesis with Yosys.

+ Static timing analysis with OpenSTA.

+ Open-source libraries Google Skywater 130 nm, FreePDK 45 nm.

Cons

- The gate-level simulation with open-source tools is currently limited

due to some issues with the SDF support.

What next?

► Implement support for SDF files or consider utilizing commercial tools.

Simulating Traces with Open-Source Tools.

Conclusion and perspectives

20

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries.

For additional information about ST trademarks, please refer to www.st.com/trademarks.

All other product or service names are the property of their respective owners.

Find out more at www.st.com

http://www.st.com/trademarks
http://www.st.com/

	Slide 1: Assessing Side-Channel Leakages Simulating Traces with Open-Source Tools
	Slide 2: Hardware masking against side-channel attacks
	Slide 3: The Trichina’s multiplication gadget¹
	Slide 4: Masking security verification processes
	Slide 5: Summary
	Slide 6: The (quasi-open-source) design flow
	Slide 7: The (quasi-open-source) design flow
	Slide 8: Logic simulation
	Slide 9: The (quasi-open-source) design flow
	Slide 10: Verilog RTL synthesis
	Slide 11: Static Timing Analysis (STA)
	Slide 12: The (quasi-open-source) design flow
	Slide 13: Gate-level simulation with open-source tools
	Slide 14: Gate-level verification
	Slide 15: The (quasi-open-source) design flow
	Slide 16: Toggle count
	Slide 17: The Side-Channel Analysis Library (SCALib)
	Slide 18: Test-vector leakage assessment (TVLA¹)
	Slide 19: Conclusion and perspectives
	Slide 20: Conclusion and perspectives
	Slide 21

