

Reliable and Efficient hardware for Trustworthy and Sustainable Deep Neural Networks

Alberto Bosio

alberto.bosio@ec-lyon.fr

Acknowledgments

RE-TRUSING Project, Grant number: ANR-21-CE24-0015 https://inl.cnrs.fr/projects/re-trusting/

AdequetDL Project, Grant number: ANR-18-CE23-0012

PEPR IA Adapting

Outline

- Introduction
- Efficient HW accelerators
- Reliable HW accelerators
- Conclusions

Outline

• Introduction

- Efficient HW accelerators
- Reliable HW accelerators
- Conclusions

Context

• Deep Neural Networks

Context

Context

Qu'est-ce que chatGPT ? Réponds-moi en deux phrases.

Why we talk about Trustworthy and Sustainable AI?

 AI ethics: "the study of ethical and societal issues facing developers, producers, consumers, citizens, policy makers, and civil society organizations."

Opinion Paper | Open access | Published: 26 February 2021 | 1,213–218 (2021)

https://link.springer.com/article/10.1007/s43681-021-00043-6

Why we talk about Trustworthy and Sustainable AI?

- Waves:
 - 1. Fanciful scenarios of robot uprisings
 - 2. The problem of **explainability**

- The lack of equal representation in training data and the resulting biases in AI models (<u>https://www.theguardian.com/technology/2018/jan/12/google-</u> racism-ban-gorilla-black-people)
- Hardware malfunctions:
 - Intentional: Adv Attacks
 - Un-intentional: Hardware Faults

3. The **sustainable** development

- AlphaGo Zero generated 96 tonnes of CO2 over 40 days of research training which amounts to 1000 h of air travel or a carbon footprint of 23 American homes
- 2. Energy usage during ChatGPT's training has been estimated to be equivalent to that of an American household for over 700 years

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Why we talk about Trustworthy and Sustainable AI? ¹⁰

Outline

Introduction

- Efficient HW accelerators
- Reliable HW accelerators
- Conclusions

Computer Architecture

Energy Cost in a Processor

- 64-bit FPU: 20pJ/op ٠
- 32-bit addition: 0.05pJ ٠
- 16-bit multiply: 0.25pJ ٠
- Wire energy ٠
 - 32 bits: 40pJ/word/mm
 - 8 bits: 10pJ/word/mm
- **Register-File** •
 - Depends on word-length

[Adapted from Dally, IPDPS'11]

Computer Architecture

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Software Level

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Software Level

Quantization

- 10k images, MNIST/LeNet-5
- Fixed-Point Arithmetic

MNIST/LeNet5

stitut des Nanotechnologies de Lyon UMR CNRS 5270

Weight Sharing

_

Weight Sharing

- 3 bits x W
 - -75 + 40 = 115 bits (instead of 200)
- ~42% bits reduction

Institut des Nanotechnologies de Lyon UMR CNRS 5270

10.23919/DATE48585.2020.9116350

Results

23

approximation all agence nationale de la recherche

Some examples: Over-Scaling

• Quentin SoC (based on PULPissimo system)

Results

Functional Approximation

Multiplier	FR	Accuracy (%)		
Multiplier	ĽK	MNIST	SVHN	
Exact	0	97.69	86.93	
mul8-350	99.0	97.70	87.00	
mu18-439	97.8	97.71	86.96	
mul8-120	98.5	97.70	87.00	
mul8-183	97.2	97.70	86.98	
mul8-134	93.9	97.72	86.95	

- Up to 71.45% more energy-efficient
- Up to 61.55% smaller

Systolic Array*

Performances

Tech library and comparison

Library	INV	NAND	NOR	XOR
VNWFET	4	3	3	3
45nm CMOS	4	1	1	1
65nm CMOS	20	15	15	10

Circuit	NVWFET	45nm CMOS	65nm CMOS
4-bits PE	230	530	221
8-bits PE	737	1674	705
16-bits PE	2553	5697	2321
32-bits PE	9395	20608	8492

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Outline

- Introduction
- Efficient HW accelerators
- Reliable HW accelerators
- Conclusions

Approximation is the key

Name	MAE	MAE-8
mul12s_2PT	0.000073	0.019
mul12s_2QH	0.0031	0.134
mul12s_2R5	0.0092	0.315
mul12s_34P	0.032	0.785
mul12s_2TE	0.19	6.080

MAE: Mean Absolute Error

https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/12x12_signed

Institut des Nanotechnologies de Lyon UMR CNRS 5270

Results

#	Bit-width	Multiplier	Energy Reduction [%]	Accuracy [%]	Injected Faults [%]	Masked [%]	Tolerable [%]	Critical [%]
Baseline	16	Precise	-	99.07%	10%	47.58%	29,18%	23.24%
1	8	Precise	50%	99.05%	19%	64.65%	23.01%	12.34%
2	8	mul12s_2PT	50.3%	99.08%	19%	63.9%	23.79%	12.3%
3	8	mul12s_2QH	51.21%	99.1%	19%	38.92%	44.85%	16.23%
4	8	mul12s_2R5	52%	99.06%	19%	26.96%	55.69%	17.34%
5	8	mul12s_34P	55%	98.24%	19%	74.16%	23.01%	2.83%
6	8	mul12s_2TE	55.6%	9.8%	19%	3.94%	27.5%	68.76%

RE-TRUSTING

Conclusions & Future works

- We need a holistic approach to achieve a HW-SW co-design methology to design **sober** and **reliable** AI applications
- How to reach this goal?

Still a lot of work to reach a sober system

Institut des Nanotechnologies de Lyon UMR CNRS 5270

We have to build a novel flow

