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Several classes of attacks

The attacker is able to:

• replay valid packet already sent

• forge and send an invalid packet

• sending arbitrary messages of the protocol

• sending many packets quickly
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Problem

How can we detect malicious behaviours

using machine learning techniques?
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ML blitz



The big question

Why do we use machine learning today?
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Drowning in a sea of information

about 106 terabytes per day
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Hard to specify sometimes

No specification of what is a pedestrian: learn from examples
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What is machine learning?

f̃ : ideal function

X̃ : ideal representation of data

Goal
learn f approximating f̃ , using an approximation of data X
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Supervised learning

Dataset X is labelled

Approximated function: classifier between the different labels

Remark: labelling data is costly!
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Some standard algorithms

Algorithm Explainability Generalization Learning cost

Decision Tree (DT) very good poor cheap

Support Vector

Machine (SVM)
poor good cheap

Neural Networks (NN) poor very good expensive
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Unsupervised learning

Dataset X is not labelled

Rely on the inherent structure of the data

Approximated function: a representation of the data
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Some standard algorithms

Algorithm Generalization Learning cost

Clustering (k-nn) good cheap

Dimensionality reduction (PCA, t-SNE) poor cheap

Neural networks (auto-encoders) very good expensive
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Data analysis



Data analysis: first analysis

• data size: 863 row×27 columns, 147 kB

• attack / non attack: 610 / 253
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Data analysis: first analysis

• attack

• captured length, dst port, frame length, ip checksum,

ip checksum status, ip size, ip dest, ip src, src port, tcp size,

timestamp

• addr, causetx, ioa, nega, numix, oa, proto name, proto size,

sq, typeid, test, qoi, siq, sco, dco
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Data analysis: first analysis

• important fields:

• typeid (type identification)

• causetx (cause of transmission)

• ioa (information object address)

• ip checksum (IPs, sequence of transmission)
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Data analysis: preprocessing

• normalization

• why? different range

• what? numeric fields

• how? mean = 0, standard deviation = [-1,1]

• one-hot encoding

• why? strings

• what? non numeric fields (type, address...)

• how? e.g., IP address

192.168.1.1

192.168.1.2

192.168.1.3 [0, 0, 1]
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Data analysis: Principal Component Analysis (PCA)

• dimensionality reduction
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Data analysis: split technics

• sequential split (75% training)

• training: 398 normals, 249 attacks

• evaluation: 212 normals, 4 attacks

• random split (75% training)

• training: 448 normals, 199 attacks

• evaluation: 162 normals, 54 attacks
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Data analysis: limitations of dataset

• small dataset with only 863 IEC104 packets

• repetitive legitimate behaviours

• unbalanced attacks behaviours

• many Denial-of-Service (DoS) attack packets

• few occurences of each attack

• 2 fields to draw out 1/4 attacks

• 1 field with sequence to draw out most of DoS attacks
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ML without sequence



Problem statement and limitations

• inputs: one packet for one output

• limitation: no context (DoS attacks indistinguishable)
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Decision Trees (DT)

Dataset X , classes Y = {y1, y2}, x =

x1x2
x3

 ∈ X

x1 > a→ P(x ∈ y1)?

x1 ≤ a→ P(x ∈ y2)?

Decision tree answer those

questions

x1 > a?

x1 < b? x2 > c?
x 1
>
a x

1 ≤
a

x 1
<
b x

1 ≥
b x 2

>
c x

2 ≤
c

. . .. . .

x ∈ y1
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Decision Trees (DT)

• case split on feature using different criterion (Gini, entropy)

• no parameter tuning, easy to train

• sensitive to data variations, can overfit fast
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Decision Trees: k-folding for training

• dataset is small ⇒ sensitive to bad data balancing

• mitigation: train multiple models on multiple splits
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Decision Trees: results

Accuracy = TP+TN
TP+TN+FP+FN : number of correct predictions

Recall = TP
TP+FN : number of detected anomalies

• training time is less than 2ms on a Intel I7-8850H

• sequential split: recall is 0%

• random split: recall is 94,3%, accuracy: 96,6%

Works surprinsingly well. Why?
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Our decisions trees are overfitting
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The two culprits features
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Support Vector Machine (SVM)

image source: wikipedia
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SVM: results

• multiple kernels used

• accuracy: 79,7%, recall: 26,3%
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Dense NN

Inputs
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Dense NN: parameters and results

• fully connected network

• 4 layers and 106 neurons

• recall : 26,3%, accuracy : 90,9%
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Take-home message

Supervised learning works because of over-fitting
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K-means and PCA
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Variational Auto Encoder

Goal: learn the probability distribution of the input

Training objective: input x, learn

a code s, an encoder Q and a de-

coder P such that x̂ is a good

reconstruction
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(Bad) results for VAE
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Take-home message (again)

1. Strong similarity between legitimate and attack packets

2. Unsupervised learning cannot separate efficiently
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Summary of results

Supervised Unsupervised

Name Acc. Rec. Time Name Acc. Rec. Time

No-seq.

SVM 80% 26% <1ms k-means N/A N/A N/A

DT 96% 97% <1ms AE 48% 80% 5min

DNN 91% 26% 2min VAE N/A N/A N/A
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ML with sequences



Sequence classification

• order is important and must be respected

• predicting a class label for a given input sequence

• limitation of classical ML and MLP: Unaware of temporal

structure
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Supervised sequence classification: LSTM

• recurrent connections

• avoid the problems that prevent the training and scaling of

other RNN

• memory cells contain weights and gates
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IDS using Bidirectional LSTM

• loss:binary cross-entropy, optimizer: Adam

• epoch: 500, batch: 20

• train: 595 (≈ 155 anomalies), test: 256 (≈ 65 anomalies)

• training time: 5min (no GPU)
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Evaluation: the beginner’s mistake

• fit to training; evaluate on test; report skill: Wrong !

• deep learning models are stochastic

• LSTM’s use randomness while being fit on a dataset

• same model may give different predictions
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IDS using Bidirectional LSTM: results
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IDS using Bidirectional LSTM: results

accuracy = TP+TN
TP+TN+FP+FN

precision = TP
TP+FP

recall = TP
TP+FN

F1 = 2× precision×recall
precision+recall

Confusion matrix =

[
TN FP

FN TP

]
Confusion matrix =

[
183 4

3 66

]
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IDS using unsupervised learning

• what if you have no labelled data at all?

• binary analysis requires hours of fingerprinting and study per

sample

• incident investigation requires huge resources and bureaucratic

layers to triage

• infers hidden latent structure from unlabelled training data

• objective: learn from unlabelled data while respecting the

temporal order
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IDS using unsupervised learning: strategy

• data preparation

• build an auto-encoder on the normal (negatively labelled) data

• use it to reconstruct a new sample

• if the reconstruction error is high, we label it as an attack
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IDS using unsupervised learning: data preparation

• the input to LSTMs are 3-dimensional arrays

• sliding window of size 6 and step = 1
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IDS using unsupervised learning: LSTM auto-encoder
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IDS using unsupervised learning: LSTM auto-encoder

• trained on legitimate

packets

• tested on legitimate

and attack packets

• epoch: 3500,

batch: 10

• training time: ≈30

min (no GPU)
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IDS using unsupervised learning: LSTM auto-encoder results
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IDS using unsupervised learning: LSTM auto-encoder results

reconstruction error

of normal packets
reconstruction error

of attack packets

49 / 58 Log analysis October 25, 2019,



IDS using unsupervised learning: LSTM auto-encoder results
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IDS using unsupervised learning: LSTM auto-encoder results

auto-encoder

(no sequence)
LSTM auto-encoder

(sequence)
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IDS using unsupervised learning: What can be done better on

huge data?

• CNN LSTM Autoencoder

• LSTM Dropout (Dropout U and Dropout W)

• Gaussian-dropout layer

• SELU activation

• alpha-dropout with SELU activation
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Conclusion



How did we tackle the problem using ML?

1. Preliminary work

• understand the protocol specification and the attacker model

• being able to identify (non-)legitimate packets

2. Data analysis

• identify relevant fields (non-constant fields, principal

component analysis...)

• verify that legitimate/attack packets are balanced

3. Apply ML techniques with single or sequence of packets

• first, the simplest algorithms (SVM, decision trees, k-means)

• then the more complex ones (DNN, LSTM, auto-encoders)

4. Evaluation of the results

• presentation of results

• explanation of success/failures (e.g., identify over-fitting)
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The different algorithm used

Supervised Unsupervised

Name Acc. Rec. Time Name Acc. Rec. Time

No-seq.

SVM 80% 26% <1ms k-means N/A N/A N/A

DT 96% 97% <1ms AE 48% 80% 5min

DNN 91% 26% 2min VAE N/A N/A N/A

Seq. LSTM 94% 89% 5min LSTM AE 91% 97% 30min
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Results and advices

Results in a nutshell:

• considering sequences is mandatory

• similar results between unsupervised and supervised ML

Few advices for re-using our approach:

• generate an adapted dataset

• consider a more realistic network

• test the simplest algorithms first

Thank you for your attention
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