
Information-Flow Preservation
in Compiler Transformations

Frédéric Besson
Alexandre Dang
Thomas Jensen

Celtique/Inria/Univ Rennes

Gdr SSLR, November 2019



Are Compilers Trustworthy?

What is the expected guarantee?

Semantic preservation
If beh(S) 6= ∅ Then beh(T) ⊆ beh(S).

1. If source is deterministic, target has same behaviour.
2. If source has unde�ned behaviour, all bets are o�.

Beware: aggressive optimisations exploit unde�ned behaviours1.

Formal veri�cation: CompCert, Vellum, CakeML

1Unde�ned behavior: what happened to my code?, Wang et al. [2012]
1 / 25



Functional Correctness of Target Code

Hyp1 : My compiler is free of bugs (e.g., LLVM)

Hyp2 : My program has no unde�ned behaviour (e.g., Linux
kernel)

Functional properties are preserved.

⇒ I can reason at source level!

2 / 25



Security Properties of Target Code?

Compilers may enhance security
shadow stack, canaries, security instrumentation

Compilers may also break security counter-measures1

Introduction of jump breaks CT-programming
Associativity of xor breaks masking
CSE breaks Fault-Injection protection
(Dead) code removal breaks CFI;breaks safe erasure

⇒ Cryptographers do not trust compilers.

1The Correctness-Security Gap in Compiler Optimization, D’Silva et al. [2015]
3 / 25



Long-term goal: a Secure Compiler

A secure compiler does not break/remove security
counter-measures.

Attackers do not get an advantage at attacking the target.
Research Agenda

De�ne classes of attackers.
Revisit/Patch existing compiler passes.

4 / 25



Today

Information-Flow Preservation
Attackers should not learn more information from the Target
than from the Source.

Attacker model
Passive observation of (arbitrary) memory content.

Contributions
Formal de�nition of an IFP1

Su�cient condition to ensure IFP
Application to Register Allocation

1Information-Flow Preserving
5 / 25



Getting Familiar with IFP



Sec. Req. 1.: Erase Sensitive Data

Dead Store Elimination (DSE) is not secure1

def crypt(key, t):
c = key ^ t
key = 0
return c

def crypt(key, t):
c = key ^ t
skip
return c

DSE

1Dead Store Elimination (Still) Considered Harmful, Yang et al. [2017]
6 / 25



Sec. Req. 2: Reduce the Lifetime of Sensitive Data

Code motion is not secure.

def p1(x):
a = x * ...
x = 0
evil()
return a

def p2(x):
a = x * ...
evil()
x = 0
return a

•
•

• •

7 / 25



Sec. Req. 3: Limit Leakage of Information

Common Expression Elimination is not secure.

def p1(x,y):
a = (x + y) + z
b = (x + y) + z
return

def p2(x,y):
tmp = x + y
a = tmp + z
b = tmp + z
return• •

8 / 25



Sec. Req. 4: Do not Duplicate Sensitive Data

Register Allocation is not secure.

def p1(x):
...
return

def p2(r1):
stack1 = r1
...
r1 = stack1
return

•
•

9 / 25



Information-Flow Preservation

IFP protects against:
Data remanence
Lifetime extension
Increased information leakage
Duplication of information

10 / 25



Formal Definition of IFP



Execution model

Trace based execution model
Memory states: data observable by attackers

m0

Initial memory

+ p

Program
Execution
of p

with m0

m1 m2 m3 . . .

Trace t

11 / 25



Attacker model

Attackers know the code
Attackers observe n bits in the trace

Trace t

1-bit

2-bit

3-bit

. . .

12 / 25



Attacker model

Attackers know the code
Attackers observe n bits in the trace

Trace t

1-bit

2-bit

3-bit

. . .

12 / 25



Attacker model

Attackers know the code
Attackers observe n bits in the trace

Trace t

1-bit

2-bit

3-bit

. . .

12 / 25



Attacker model

Attackers know the code
Attackers observe n bits in the trace

Trace t

1-bit

2-bit

3-bit

. . .

12 / 25



Attacker model

Attackers know the code
Attackers observe n bits in the trace

Trace t

1-bit

2-bit

3-bit

. . .

12 / 25



Attacker model

Attackers know the code
Attackers observe n bits in the trace

Trace t

1-bit

2-bit

3-bit

. . .

12 / 25



Rationale for hierarchy of attackers

def crypt(key, t):
c = key ^ t
key = 0
return c

def crypt(key, t):
c = key ^ t
skip
return c• •

∞-bit ∞-bit

Haha! I’ve learned
the value key = c∧t

1-bit 1-bit

Nothing on key

I can get a
bit of key!

equally insecure for a strong attacker

p1 is secure for the 1-bit attacker

13 / 25



Rationale for hierarchy of attackers

def crypt(key, t):
c = key ^ t
key = 0
return c

def crypt(key, t):
c = key ^ t
skip
return c• •

∞-bit ∞-bit

Haha! I’ve learned
the value key = c∧t

1-bit 1-bit

Nothing on key

I can get a
bit of key!

equally insecure for a strong attacker
p1 is secure for the 1-bit attacker

13 / 25



Attacker Knowledge 1

Attackers try to guess the initial memory used
Possible initial memories matching its observations

m0 + p

Attacker Knowledge

m0

m0

m0

Remark:
Big/coarse attacker
knowledge means that there
is few information on m0

1Gradual Release: Unifying Declassi�cation, Encryption and Key Release
Policies, Askarov and Sabelfeld [2007]

14 / 25



Attacker Knowledge 1

Attackers try to guess the initial memory used
Possible initial memories matching its observations

m0 + p

Attacker Knowledge

m0

m0

m0

Remark:
Big/coarse attacker
knowledge means that there
is few information on m0

1Gradual Release: Unifying Declassi�cation, Encryption and Key Release
Policies, Askarov and Sabelfeld [2007]

14 / 25



IFP transformation (1/2)

Intuition

Any information that can be learned with a trace observa-
tion of the transformed program can also be learned with
the source program

transformed
source

Haha!
I’ve learned
value of x

Sorry mate, you
could already
�nd it up here

15 / 25



IFP transformation (1/2)

Intuition

Any information that can be learned with a trace observa-
tion of the transformed program can also be learned with
the source program

transformed
source

Haha!
I’ve learned
value of x

Sorry mate, you
could already
�nd it up here

15 / 25



IFP transformation (2/2)

A transformation from p1 to p2 is IFP i�:
∀(m0, t1, t2). ∀n. ∃ω ∈ Ω(t1, t2). ∀o2. Kt1n (p1, ω(o2)) ⊆ Kt2n (p2,o2)

m0

+

+

p1

p2

t1

t2

K1

K2

⊆

Source program p1
Transformed program p2

For any execution from
the same initial memory m0

For attackers with any
observation capabilitiesExists lockstep pairings of observations from t2 to t1

ω
ω

o2

ω(o2)

For any observation o2 of size n on the trace t2K1 derived from ω(o2)
is a subset of
K2 derived from o2

16 / 25



IFP transformation (2/2)

A transformation from p1 to p2 is IFP i�:
∀(m0, t1, t2). ∀n. ∃ω ∈ Ω(t1, t2). ∀o2. Kt1n (p1, ω(o2)) ⊆ Kt2n (p2,o2)

m0

+

+

p1

p2

t1

t2

K1

K2

⊆

Source program p1
Transformed program p2

For any execution from
the same initial memory m0

For attackers with any
observation capabilitiesExists lockstep pairings of observations from t2 to t1

ω
ω

o2

ω(o2)

For any observation o2 of size n on the trace t2K1 derived from ω(o2)
is a subset of
K2 derived from o2

16 / 25



IFP transformation (2/2)

A transformation from p1 to p2 is IFP i�:
∀(m0, t1, t2). ∀n. ∃ω ∈ Ω(t1, t2). ∀o2. Kt1n (p1, ω(o2)) ⊆ Kt2n (p2,o2)

m0

+

+

p1

p2

t1

t2

K1

K2

⊆

Source program p1
Transformed program p2

For any execution from
the same initial memory m0

For attackers with any
observation capabilitiesExists lockstep pairings of observations from t2 to t1

ω
ω

o2

ω(o2)

For any observation o2 of size n on the trace t2K1 derived from ω(o2)
is a subset of
K2 derived from o2

16 / 25



IFP transformation (2/2)

A transformation from p1 to p2 is IFP i�:
∀(m0, t1, t2). ∀n. ∃ω ∈ Ω(t1, t2). ∀o2. Kt1n (p1, ω(o2)) ⊆ Kt2n (p2,o2)

m0

+

+

p1

p2

t1

t2

K1

K2

⊆

Source program p1
Transformed program p2

For any execution from
the same initial memory m0

For attackers with any
observation capabilitiesExists lockstep pairings of observations from t2 to t1

ω
ω

o2

ω(o2)

For any observation o2 of size n on the trace t2K1 derived from ω(o2)
is a subset of
K2 derived from o2

16 / 25



IFP transformation (2/2)

A transformation from p1 to p2 is IFP i�:
∀(m0, t1, t2). ∀n. ∃ω ∈ Ω(t1, t2). ∀o2. Kt1n (p1, ω(o2)) ⊆ Kt2n (p2,o2)

m0

+

+

p1

p2

t1

t2

K1

K2

⊆

Source program p1
Transformed program p2

For any execution from
the same initial memory m0

For attackers with any
observation capabilitiesExists lockstep pairings of observations from t2 to t1

ω
ω

o2

ω(o2)

For any observation o2 of size n on the trace t2K1 derived from ω(o2)
is a subset of
K2 derived from o2

16 / 25



IFP transformation (2/2)

A transformation from p1 to p2 is IFP i�:
∀(m0, t1, t2). ∀n. ∃ω ∈ Ω(t1, t2). ∀o2. Kt1n (p1, ω(o2)) ⊆ Kt2n (p2,o2)

m0

+

+

p1

p2

t1

t2

K1

K2

⊆

Source program p1
Transformed program p2

For any execution from
the same initial memory m0

For attackers with any
observation capabilitiesExists lockstep pairings of observations from t2 to t1

ω
ω

o2

ω(o2)

For any observation o2 of size n on the trace t2K1 derived from ω(o2)
is a subset of
K2 derived from o2

16 / 25



IFP transformation (2/2)

A transformation from p1 to p2 is IFP i�:
∀(m0, t1, t2). ∀n. ∃ω ∈ Ω(t1, t2). ∀o2. Kt1n (p1, ω(o2)) ⊆ Kt2n (p2,o2)

m0

+

+

p1

p2

t1

t2

K1

K2

⊆

Source program p1
Transformed program p2

For any execution from
the same initial memory m0

For attackers with any
observation capabilitiesExists lockstep pairings of observations from t2 to t1

ω
ω

o2

ω(o2)

For any observation o2 of size n on the trace t2K1 derived from ω(o2)
is a subset of
K2 derived from o2

16 / 25



Proof technique



Sufficient condition for an IFP transformation

Lockstep pairings from memory address of the trace t2
Each address of t2 is paired to:
I a lockstep address of t1 OR
I a constant

∃α. ∀(m0, t1, t2). ∀a2, i. t2[i](a2) =
{
t1[i](αi(a2)) if αi(a2) ∈ Address
αi(a2) if αi(a2) ∈ Bit

m0

+

+

p1

p2 5

t1

t2

α α

17 / 25



Translation Validation for Regis-
ter Allocation



Register Allocation

Introduce spilling of values in the stack
Usually not IFP:
I Duplication on both stack and registers
I Erasure may not be applied to both locations

Example with a 2-register machine:

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

Secret value is duplicated
and not erased on the stack

18 / 25



Register Allocation

Introduce spilling of values in the stack
Usually not IFP:
I Duplication on both stack and registers
I Erasure may not be applied to both locations

Example with a 2-register machine:

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

Secret value is duplicated
and not erased on the stack

18 / 25



Validation and patching toolchain

Validator veri�es the su�cient condition
Detected leakage are patched

p1

p2

p3

Source

Trans-
formed

Validator Analysis IFP
performs validated

rejected

patches p2rechecks

19 / 25



Computing pairings

build pairings from address of p2 to address/constant

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

•

•
•

•

k ← r1
t ← r2
salt ← stack_salt

k ← r1
t ← r2
salt ← stack_salt
k ← stack_k

salt ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
? ← stack_kLeakage

20 / 25



Computing pairings

build pairings from address of p2 to address/constant

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

•

•
•

•

k ← r1
t ← r2
salt ← stack_salt

k ← r1
t ← r2
salt ← stack_salt
k ← stack_k

salt ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
? ← stack_kLeakage

20 / 25



Computing pairings

build pairings from address of p2 to address/constant

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

•

•
•

•

k ← r1
t ← r2
salt ← stack_salt

k ← r1
t ← r2
salt ← stack_salt
k ← stack_k

salt ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
? ← stack_kLeakage

20 / 25



Computing pairings

build pairings from address of p2 to address/constant

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

•

•
•

•

k ← r1
t ← r2
salt ← stack_salt

k ← r1
t ← r2
salt ← stack_salt
k ← stack_k

salt ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
? ← stack_kLeakage

20 / 25



Computing pairings

build pairings from address of p2 to address/constant

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

•

•
•

•

k ← r1
t ← r2
salt ← stack_salt

k ← r1
t ← r2
salt ← stack_salt
k ← stack_k

salt ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
? ← stack_kLeakage

20 / 25



Computing pairings

build pairings from address of p2 to address/constant

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

•

•
•

•

k ← r1
t ← r2
salt ← stack_salt

k ← r1
t ← r2
salt ← stack_salt
k ← stack_k

salt ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
? ← stack_kLeakage

20 / 25



Computing pairings

build pairings from address of p2 to address/constant

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
return r2

•

•
•

•

k ← r1
t ← r2
salt ← stack_salt

k ← r1
t ← r2
salt ← stack_salt
k ← stack_k

salt ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
t ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
k ← stack_k

tmp ← r1
k ← r2
salt ← stack_salt
? ← stack_kLeakage

20 / 25



Patching leakage

Leakage are patched with constant values

def p1(k,t,salt):
tmp = t + salt
k = tmp + k
return k

def p2(r1,r2,stack_salt):
stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
r2 = r1 + r2
stack_k = 0
return r2

•

•

•

•

tmp ← r1
k ← r2
salt ← stack_salt
0 ← stack_k

21 / 25



Experiments

Observation points are placed at function calls and returns
On the veri�ed compiler CompCert1

We measure the impact of patching on the programs
Correctness is ensured by CompCert original validator
Patching of duplication was not implemented here

1Formal Certi�cation of a Compiler Back-end, Leroy [2006]
22 / 25



Measuring impact of patching

fa
nn

ku
ch fft
w

ns
ie

ve
bi

ts
m

an
de

lb
ro

t
bi

se
ct

vm
ac

h
ae

s
nb

od
y

sh
a1

bi
na

ry
tre

es
sip

ha
sh

24 fft
sp

ec
tra

l
sh

a3 lis
ts

kn
uc

le
ot

id
e

ch
om

p
ns

ie
ve fib

fft
sp

al
m

ab
en

ch
pe

rli
n

0

20

40

60

80

Pe
rc

en
ta

ge
Time overhead

23 / 25



Measuring impact of patching

fa
nn

ku
ch fft
w

ns
ie

ve
bi

ts
m

an
de

lb
ro

t
bi

se
ct

vm
ac

h
ae

s
nb

od
y

sh
a1

bi
na

ry
tre

es
sip

ha
sh

24 fft
sp

ec
tra

l
sh

a3 lis
ts

kn
uc

le
ot

id
e

ch
om

p
ns

ie
ve fib

fft
sp

al
m

ab
en

ch
pe

rli
n

0

20

40

60

80

Pe
rc

en
ta

ge
Time overhead
Executed instructions overhead

23 / 25



Related work and Conclusion



Related work

Securing a compiler transformation12
I preserve programs that do not leak
I does not di�erentiate between degrees of leakage

Preservation of side-channel countermeasures3
I framework to preserve security properties
I di�erent leakage model
I use a 2-simulation property

1Securing a Compiler Transformation, Deng and Namjoshi [2016]
2Securing the SSA Transform, Deng and Namjoshi [2017]
3Secure Compilation of Side-Channel Countermeasures, Barthe et al. [2018]

24 / 25



Future work

Towards a secure IFP compiler
I More compilation passes
I Better performance of patching

Re�ne our IFP property
I Current property is bound by observation points
I Could attackers observe at any time?

Other Models of Attackers
I Speculative Attackers
I Hamming Weight Model

25 / 25



Thank you for listening
Contact me!

alexandre.dang@inria.fr


	Getting Familiar with IFP
	Formal Definition of IFP
	Proof technique
	Translation Validation for Register Allocation
	Related work and Conclusion
	References

