INFORMATION-FLOW PRESERVATION IN COMPILER TRANSFORMATIONS

Frédéric Besson Alexandre Dang
Thomas Jensen
Celtique/Inria/Univ Rennes
Gdr SSLR, November 2019

Are Compilers Trustworthy?

What is the expected guarantee?

Semantic preservation

If $\operatorname{beh}(S) \neq \emptyset$ Then $\operatorname{beh}(T) \subseteq \operatorname{beh}(S)$.

1. If source is deterministic, target has same behaviour.
2. If source has undefined behaviour, all bets are off.

Beware: aggressive optimisations exploit undefined behaviours¹.

Formal verification: CompCert, Vellum, CakeML

[^0]
Functional Correctiness of Target Code

Hyp1: My compiler is free of bugs (e.g., LLVM)

Hyp2: My program has no undefined behaviour (e.g., Linux kernel)

Functional properties are preserved.
\Rightarrow I can reason at source level!

Security Properties of Target Code?

Compilers may enhance security
shadow stack, canaries, security instrumentation

Compilers may also break security counter-measures ${ }^{1}$

- Introduction of jump breaks CT-programming
- Associativity of xor breaks masking
- CSE breaks Fault-Injection protection
- (Dead) code removal breaks CFI;breaks safe erasure
\Rightarrow Cryptographers do not trust compilers.

LONG-TERM GOAL: A SECURE COMPILER

A secure compiler does not break/remove security counter-measures.

Attackers do not get an advantage at attacking the target. Research Agenda

■ Define classes of attackers.
■ Revisit/Patch existing compiler passes.

TodAy

Information-Flow Preservation

Attackers should not learn more information from the Target than from the Source.

Attacker model

Passive observation of (arbitrary) memory content.
Contributions
■ Formal definition of an IFP ${ }^{1}$
■ Sufficient condition to ensure IFP
■ Application to Register Allocation

[^1]
GETting Familiar with IFP

Sec. Req. 1.: ERASE Sensitive Data

Dead Store Elimination (DSE) is not secure ${ }^{1}$

```
def crypt(key, t):
c = key ^ t
key = 0
return c
```

```
def crypt(key, t):
c = key ^ t
skip
return C
```

${ }^{1}$ Dead Store Elimination (Still) Considered Harmful, Yang et al. [2017]

Sec. Req. 2: Reduce the Lifetime of Sensitive Data

Code motion is not secure.

```
def p1(x):
    a = x * ...
    x = 0
    - evil()
    - return a
```

def $\mathrm{p} 2(\mathrm{x})$:
a $=x$ * \ldots.
evil ()
$x=0$
-return a

SEC. Req. 3: LIMIT LeAKAGE OF INFORMATION

Common Expression Elimination is not secure.

$$
\begin{aligned}
& \text { def } p 1(x, y): \\
& a=(x+y)+z \\
& b=(x+y)+z \\
& \text { b return }
\end{aligned}
$$

```
def p2(x,y):
    tmp = x + y
    a = tmp + z
    b = tmp + z
    - return
```


SEC. Req. 4: DO not Duplicate Sensitive Data

Register Allocation is not secure.

IFP protects against:
■ Data remanence
■ Lifetime extension
■ Increased information leakage
■ Duplication of information

FORMAL DEFINITION OF IFP

EXECUTION MODEL

■ Trace based execution model
■ Memory states: data observable by attackers

ATTACKER MODEL

- Attackers know the code
- Attackers observe n bits in the trace

ATTACKER MODEL

- Attackers know the code
- Attackers observe n bits in the trace

ATTACKER MODEL

- Attackers know the code
- Attackers observe n bits in the trace

ATTACKER MODEL

- Attackers know the code

■ Attackers observe n bits in the trace

ATTACKER MODEL

- Attackers know the code
- Attackers observe n bits in the trace

ATTACKER MODEL

- Attackers know the code
- Attackers observe n bits in the trace

Rationale for hierarchy of attackers

```def crypt(key, t): c = key ^ t key = 0 •return c```	```def crypt(key, t): c = key ^ t skip -return c```



■ equally insecure for a strong attacker

## Rationale for hierarchy of attackers

```
def crypt(key, t):
c = key ^ t
key = 0
-return c
```

```
def crypt(key, t):
c = key ^ t
skip
- return c
```

Nothing on key

$\infty$-bit 1-bit

## I can get a bit of key!

■ equally insecure for a strong attacker
■ p1 is secure for the 1-bit attacker


1-bit $\infty$-bit

## ATTACKER KNOWLEDGE ${ }^{1}$

■ Attackers try to guess the initial memory used
■ Possible initial memories matching its observations

${ }^{1}$ Gradual Release: Unifying Declassification, Encryption and Key Release Policies, Askarov and Sabelfeld [2007]

## ATTACKER KNOWLEDGE ${ }^{1}$

■ Attackers try to guess the initial memory used
■ Possible initial memories matching its observations

## Remark:

Big/coarse attacker
knowledge means that there is few information on $m_{0}$

## Attacker Knowledge


$\square$

${ }^{1}$ Gradual Release: Unifying Declassification, Encryption and Key Release Policies, Askarov and Sabelfeld [2007]

## IFP TRANSFORMATION (1/2)

## Intuition

Any information that can be learned with a trace observation of the transformed program can also be learned with the source program

source
transformed


## IFP TRANSFORMATION (1/2)

## Intuition

Any information that can be learned with a trace observation of the transformed program can also be learned with the source program


## IFP TRANSFORMATION (2/2)

A transformation from $p_{1}$ to $p_{2}$ is IFP iff:
$\forall\left(m_{0}, t_{1}, t_{2}\right) . \forall n . \exists \omega \in \Omega\left(t_{1}, t_{2}\right) . \forall o_{2} . \quad \mathcal{K}_{n}^{t_{1}}\left(p_{1}, \omega\left(o_{2}\right)\right) \subseteq \mathcal{K}_{n}^{t_{2}}\left(p_{2}, o_{2}\right)$

## IFP TRANSFORMATION (2/2)

A transformation from $p_{1}$ to $p_{2}$ is IFP iff:
$\forall\left(m_{0}, t_{1}, t_{2}\right) . \forall n . \exists \omega \in \Omega\left(t_{1}, t_{2}\right) . \forall o_{2} . \quad \mathcal{K}_{n}^{t_{1}}\left(p_{1}, \omega\left(O_{2}\right)\right) \subseteq \mathcal{K}_{n}^{t_{2}}\left(p_{2}, o_{2}\right)$
Source program $p_{1}$ Transformed program $p_{2}$


## IFP TRANSFORMATION (2/2)

A transformation from $p_{1}$ to $p_{2}$ is IFP iff:
$\forall\left(m_{0}, t_{1}, t_{2}\right) . \forall n . \exists \omega \in \Omega\left(t_{1}, t_{2}\right) . \forall o_{2} . \quad \mathcal{K}_{n}^{t_{1}}\left(p_{1}, \omega\left(o_{2}\right)\right) \subseteq \mathcal{K}_{n}^{t_{2}}\left(p_{2}, o_{2}\right)$
For any execution from the same initial memory mo


## IFP TRANSFORMATION (2/2)

A transformation from $p_{1}$ to $p_{2}$ is IFP iff:

$$
\forall\left(m_{0}, t_{1}, t_{2}\right) . \forall n . \exists \omega \in \Omega\left(t_{1}, t_{2}\right) . \forall o_{2} . \quad \mathcal{K}_{n}^{t_{1}}\left(p_{1}, \omega\left(o_{2}\right)\right) \subseteq \mathcal{K}_{n}^{t_{2}}\left(p_{2}, o_{2}\right)
$$

## For attackers with any observation capabilities



## IFP TRANSFORMATION (2/2)

A transformation from $p_{1}$ to $p_{2}$ is IFP iff:
$\forall\left(m_{0}, t_{1}, t_{2}\right) . \forall n . \exists \omega \in \Omega\left(t_{1}, t_{2}\right) . \forall o_{2} . \quad \mathcal{K}_{n}^{t_{1}}\left(p_{1}, \omega\left(o_{2}\right)\right) \subseteq \mathcal{K}_{n}^{t_{2}}\left(p_{2}, o_{2}\right)$
Exists lockstep pairings of observations from $t_{2}$ to $t_{1}$


## IFP TRANSFORMATION (2/2)

A transformation from $p_{1}$ to $p_{2}$ is IFP iff:
$\forall\left(m_{0}, t_{1}, t_{2}\right) . \forall n . \exists \omega \in \Omega\left(t_{1}, t_{2}\right) . \forall o_{2} . \quad \mathcal{K}_{n}^{t_{1}}\left(p_{1}, \omega\left(O_{2}\right)\right) \subseteq \mathcal{K}_{n}^{t_{2}}\left(p_{2}, o_{2}\right)$
For any observation $\mathrm{O}_{2}$ of size $n$ on the trace $t_{2}$


## IFP TRANSFORMATION (2/2)

A transformation from $p_{1}$ to $p_{2}$ is IFP iff:

$$
\forall\left(m_{0}, t_{1}, t_{2}\right) . \forall n . \exists \omega \in \Omega\left(t_{1}, t_{2}\right) . \forall o_{2} . \quad \mathcal{K}_{n}^{t_{1}}\left(p_{1}, \omega\left(o_{2}\right)\right) \subseteq \mathcal{K}_{n}^{t_{2}}\left(p_{2}, o_{2}\right)
$$

## $\mathcal{K}_{1}$ derived from $\omega\left(O_{2}\right)$ is a subset of $\mathcal{K}_{2}$ derived from $\mathrm{O}_{2}$



PROOF TECHNIQUE

## SUFFICIENT CONDITION FOR AN IFP TRANSFORMATION

■ Lockstep pairings from memory address of the trace $t_{2}$
■ Each address of $t_{2}$ is paired to:

- a lockstep address of $t_{1}$ OR
- a constant
$\exists \alpha . \forall\left(m_{\circ}, t_{1}, t_{2}\right) . \forall a_{2}, i . \quad t_{2}[i]\left(a_{2}\right)= \begin{cases}t_{1}[i]\left(\alpha_{i}\left(a_{2}\right)\right) & \text { if } \alpha_{i}\left(a_{2}\right) \in \text { Address } \\ \alpha_{i}\left(a_{2}\right) & \text { if } \alpha_{i}\left(a_{2}\right) \in \text { Bit }\end{cases}$


TRANSLATION VALIDATION FOR REGISter Allocation

## Register Allocation

■ Introduce spilling of values in the stack
■ Usually not IFP:

- Duplication on both stack and registers
- Erasure may not be applied to both locations

Example with a 2-register machine:

$$
\begin{aligned}
& \text { def p2 }\left(r 1, r 2, s t a c k _s a l t\right): \\
& \text { stack_k }=r 1 \\
& r 1=s t a c k _s a l t \\
& r 1=r 2+r 1 \\
& r 2=s t a c k _k \\
& r 2=r 1+r 2 \\
& \text { return r2 }
\end{aligned}
$$

def $\mathrm{p} 1(\mathrm{k}, \mathrm{t}, \mathrm{salt}):$ tmp $=\mathrm{t}+\mathrm{salt}$
$k=\operatorname{tmp}+k$
return $k$

## Register Allocation

■ Introduce spilling of values in the stack
■ Usually not IFP:

- Duplication on both stack and registers
- Erasure may not be applied to both locations

Example with a 2-register machine:
def $\mathrm{p}_{1}(\mathrm{k}, \mathrm{t}, \mathrm{salt})$ : stack_k = r1
tmp =
$k=\operatorname{tmp}$ Secret value is duplicated r1
return and not erased on the stack $\underbrace{}_{\text {_ }}$ k
return r 2

## VALIDATION AND PATCHING TOOLCHAIN

- Validator verifies the sufficient condition
- Detected leakage are patched



## COMPUTING PAIRINGS

■ build pairings from address of $p_{2}$ to address/constant
def $\mathrm{p}_{1}(\mathrm{k}, \mathrm{t}, \mathrm{salt})$ :

- tmp = t + salt
$k=t m p+k$
- return k

$$
\begin{aligned}
& \text { def p2 }\left(r 1, r 2, s t a c k _s a l t\right): \\
& \text { stack_k }=r 1 \\
& r 1=s t a c k _s a l t \\
& r 1=r 2+r 1 \\
& r 2=s t a c k _k \\
& r 2=r 1+r 2 \\
& \text { - return r2 }
\end{aligned}
$$



## COMPUTING PAIRINGS

■ build pairings from address of $p_{2}$ to address/constant

$$
\begin{aligned}
& \text { def } \mathrm{p} 1^{(k, t, s a l t):} \\
& \text { tmp }=t+s a l t \\
& k=\operatorname{tmp}+k \\
& \text { - return } k
\end{aligned}
$$

$$
\begin{aligned}
& \text { def p2(r1,r2,stack_salt): } \\
& \text { estack_k }=\text { r1 } \\
& \hline r 1=s t a c k _s a l t \\
& r 1=r 2+r 1 \\
& r 2=s t a c k _k \\
& r 2=r 1+r 2 \\
& \text { - return r2 }
\end{aligned}
$$

$k$	$\leftarrow$	$r 1$
$t$	$\leftarrow$	$r 2$
salt	$\leftarrow$	stack_salt
$k$	$\leftarrow$	stack_k

## COMPUTING PAIRINGS

■ build pairings from address of $p_{2}$ to address/constant

$$
\begin{aligned}
& \text { def } \mathrm{p} 1(\mathrm{k}, \mathrm{t}, \mathrm{salt}): \\
& \mathrm{tmp}=\mathrm{t}+\mathrm{salt} \\
& \mathrm{k}=\text { tmp }+k \\
& \text { - return } k
\end{aligned}
$$

def p2(r1, r2,stack_salt):

- stack_k = r1

$$
\begin{aligned}
& \mathrm{r} 1=s t a c k _s a l t \\
& \hline \mathrm{r} 1=r 2+r 1 \\
& \mathrm{r} 2=s t a c k _k \\
& r 2=r 1+r 2
\end{aligned}
$$

- return r2

salt	$\leftarrow$	$r 1$
$t$	$\leftarrow$	$r 2$
salt	$\leftarrow$	stack_salt
$k$	$\leftarrow$	stack_k 2

## COMPUTING PAIRINGS

■ build pairings from address of $p_{2}$ to address/constant
def $\mathrm{p} 1(\mathrm{k}, \mathrm{t}, \mathrm{salt})$ :

- tmp = t + salt $\mathrm{k}=\mathrm{tmp}+\mathrm{k}$
- return $k$
def p2(r1, r2,stack_salt):
- stack_k = r1

$$
\begin{aligned}
r 1 & =s t a c k _s a l t \\
r 1 & =r 2+r 1 \\
\hline r 2 & =s t a c k _k \\
r 2 & =r 1+r 2
\end{aligned}
$$

- return r2


## COMPUTING PAIRINGS

■ build pairings from address of $p_{2}$ to address/constant
def $p 1(k, t, s a l t):$

- tmp = t + salt $\mathrm{k}=\mathrm{tmp}+\mathrm{k}$
- return $k$
def p2(r1, r2,stack_salt):
- stack_k = r1
r1 = stack_salt
r1 = r2 + r1
$r 2=s t a c k _k$
$r 2=r 1+r 2$
- return r2


## COMPUTING PAIRINGS

■ build pairings from address of $p_{2}$ to address/constant
def $\mathrm{p}_{1}(\mathrm{k}, \mathrm{t}, \mathrm{salt})$ :

- tmp = t + salt
$k=t m p+k$
- return $k$
- stack_k = r1
r1 = stack_salt

$$
r 1=r 2+r 1
$$

$$
\mathrm{r} 2=\text { stack_k }
$$

$$
r_{2}=r 1+r 2
$$

return r2

## COMPUTING PAIRINGS

■ build pairings from address of $p_{2}$ to address/constant
def $\mathrm{p} 1(\mathrm{k}, \mathrm{t}, \mathrm{salt})$ :

- tmp = t + salt
$k=t m p+k$
- return $k$
def p2(r1, r2,stack_salt):
- stack_k = r1

$$
\begin{aligned}
& r 1=s t a c k _s a l t \\
& r 1=r 2+r 1 \\
& r 2=s t a c k _k \\
& r 2=r 1+r 2
\end{aligned}
$$

- return r2



## PATCHING LEAKAGE

## Leakage are patched with constant values

def $\mathrm{p} 1(\mathrm{k}, \mathrm{t}, \mathrm{salt})$ :

- tmp = t + salt
$k=t m p+k$
- return $k$
def p2(r1, r2,stack_salt):
- stack_k = r1
r1 = stack_salt
r1 = r2 + r1
r2 = stack_k
$r 2=r 1+r 2$
stack_k $=0$
return r2



## EXPERIMENTS

■ Observation points are placed at function calls and returns
■ On the verified compiler CompCert ${ }^{1}$

- We measure the impact of patching on the programs

■ Correctness is ensured by CompCert original validator
■ Patching of duplication was not implemented here

[^2]


Related work and Conclusion

## RELATED WORK

- Securing a compiler transformation ${ }^{12}$
- preserve programs that do not leak
- does not differentiate between degrees of leakage

■ Preservation of side-channel countermeasures ${ }^{3}$

- framework to preserve security properties
- different leakage model
- use a 2-simulation property

[^3]
## FUTURE WORK

■ Towards a secure IFP compiler

- More compilation passes
- Better performance of patching

■ Refine our IFP property

- Current property is bound by observation points
- Could attackers observe at any time?

■ Other Models of Attackers

- Speculative Attackers
- Hamming Weight Model


# Thank you for listening 

Contact me! alexandre.dang@inria.fr


[^0]:    ${ }^{1}$ Undefined behavior: what happened to my code?, Wang et al. [2012]

[^1]:    ${ }^{1}$ Information-Flow Preserving

[^2]:    ${ }^{1}$ Formal Certification of a Compiler Back-end, Leroy [2006]

[^3]:    ${ }^{1}$ Securing a Compiler Transformation, Deng and Namjoshi [2016]
    ${ }^{2}$ Securing the SSA Transform, Deng and Namjoshi [2017]
    ${ }^{3}$ Secure Compilation of Side-Channel Countermeasures, Barthe et al. [2018]

