INFORMATION-FLOW PRESERVATION

IN COMPILER TRANSFORMATIONS

FREDERIC BESSON
ALEXANDRE DANG
THOMAS JENSEN

CELTIQUE/INRIA/UNIV RENNES

GDR SSLR, NOVEMBER 2019

ARE COMPILERS TRUSTWORTHY?

What is the expected guarantee?

Semantic preservation
If beh(S) # () Then beh(T) C beh(S).

1. If source is deterministic, target has same behaviour.
2. If source has undefined behaviour, all bets are off.

Beware: aggressive optimisations exploit undefined behaviours'.

Formal verification: CompCert, Vellum, CakeML

"Undefined behavior: what happened to my code? Wang et al. [2012]

FUNCTIONAL CORRECTNESS OF TARGET CODE

Hyp1: My compiler is free of bugs (e.g., LLVM)

Hyp2 : My program has no undefined behaviour (e.g., Linux
kernel)

Functional properties are preserved.

= | can reason at source level!

SECURITY PROPERTIES OF TARGET CODE?

Compilers may enhance security
shadow stack, canaries, security instrumentation

Compilers may also break security counter-measures’

m Introduction of jump breaks CT-programming

m Associativity of xor breaks masking

m CSE breaks Fault-Injection protection

m (Dead) code removal breaks CFl;breaks safe erasure
= Cryptographers do not trust compilers.

"The Correctness-Security Gap in Compiler Optimization, D'Silva et al. [2015]

LONG-TERM GOAL: A SECURE COMPILER

A secure compiler does not break/remove security
counter-measures.

Attackers do not get an advantage at attacking the target.
Research Agenda

m Define classes of attackers.
m Revisit/Patch existing compiler passes.

TODAY

Information-Flow Preservation

Attackers should not learn more information from the Target
than from the Source.

Attacker model

Passive observation of (arbitrary) memory content.

Contributions
m Formal definition of an IFP’
m Sufficient condition to ensure IFP
m Application to Register Allocation

"Information-Flow Preserving

GETTING FAMILIAR WITH IFP

SEC. REQ. 1.: ERASE SENSITIVE DATA

Dead Store Elimination (DSE) is not secure’

def crypt(key, t): DSE | def crypt(key, t):

c = key " t y <= key * t
key = 0 skip
return c return c

"Dead Store Elimination (Still) Considered Harmful, Yang et al. [2017]

SEC. REQ. 2: REDUCE THE LIFETIME OF SENSITIVE DATA

Code motion is not secure.

def pa(x):

X = 0
eevil()
e return a

a =X * ...

def p2(x):

a = X * ...

oevil()
X =0
ereturn a

SEC. REQ. 3: LIMIT LEAKAGE OF INFORMATION

Common Expression Elimination is not secure.

def p1(x,y): de{mg2£x),(yz.y
a=(x+y)+z M acotmp -z
8= es g oz b = tmp + 2
e return e return

SEC. REQ. 4: DO NOT DUPLICATE SENSITIVE DATA

Register Allocation is not secure.

def p2(ri1):
def p1(x): stacki = ra
e N ...
e return ri1 = stack1
e return

INFORMATION-FLOW PRESERVATION

IFP protects against:
m Data remanence
m Lifetime extension
m Increased information leakage
m Duplication of information

FORMAL DEFINITION OF IFP

EXECUTION MODEL

m Trace based execution model
m Memory states: data observable by attackers

Execution

. Program of p
Initial memory with mo Trace t

N R (I (DS

ATTACKER MODEL

m Attackers know the code
m Attackers observe n bits in the trace

Trace t

EEES- I

ATTACKER MODEL

m Attackers know the code
m Attackers observe n bits in the trace

Trace t

FEEEE

ATTACKER MODEL

m Attackers know the code
m Attackers observe n bits in the trace

Trace t

L&

ATTACKER MODEL

m Attackers know the code
m Attackers observe n bits in the trace

Trace t

DEE! };;\':"'@ bt
\@2-bit

ATTACKER MODEL

m Attackers know the code

m Attackers observe n bits in the trace

ATTACKER MODEL

m Attackers know the code

m Attackers observe n bits in the trace

RATIONALE FOR HIERARCHY OF ATTACKERS

def crypt(key, t): def crypt(key, t):
c = key * t) c = key " t
key = 0 skip
ereturn c e return c

Haha! I've learned
the value key = c't
oo-bit oo-bit

m equally insecure for a strong attacker

RATIONALE FOR HIERARCHY OF ATTACKERS

def crypt(key, t):
c = key * t
key = 0
ereturn c

S o

oo-bit 1-bit

Nothing on key

def crypt(key, t):

AN

) c = key t
skip
e return c
lcangeta @
bit of key!
1-bit oco-bit

m equally insecure for a strong attacker
m p1is secure for the 1-bit attacker

ATTACKER KNOWLEDGE

m Attackers try to guess the initial memory used
m Possible initial memories matching its observations

Attacker Knowledge

)+

"Gradual Release: Unifying Declassification, Encryption and Key Release
Policies, Askarov and Sabelfeld [2007]

ATTACKER KNOWLEDGE

m Attackers try to guess the initial memory used
m Possible initial memories matching its observations

Attacker Knowledge

Remark:

Big/coarse attacker
knowledge means that there
is few information on mg

DB~ S

'"Gradual Release: Unifying Declassification, Encryption and Key Release
Policies, Askarov and Sabelfeld [2007]

IFP TRANSFORMATION (1/2)

Any information that can be learned with a trace observa-
tion of the transformed program can also be learned with
the source program

auea

source

Haha!
I've learned
value of x

transformed

(TFr) &

IFP TRANSFORMATION (1/2)

Any information that can be learned with a trace observa-
tion of the transformed program can also be learned with
the source program

Sorry mate, you
could already
find it up here

5 @

ArL Ay

Haha!
I've learned
value of x

source

transformed

(TFr) &

IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
V(mo, ty, t,). Vn. Jw € Q(t;, t,). Vo,. Kh(pq,w(0,)) € K2(p,, 0,)

IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
V(mo, ty, t,). Vn. Jw € Q(t;, t,). Vo,. Kh(pq,w(0,)) € K2(p,, 0,)

Source program p;,
Transformed program p,

P

P2

IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:

V(mo, ty, t)| Vn. Jw € Q(t;, t,). Vo,. Kh(pq,w(0,)) € K2(p,, 0,)

For any execution from
the same initial memory m,

+ 5 — (0
+E - (0
2

IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
(Mo, t,, 1) [¥N) 3w € Qt,,). VO, K§(pr, w(02)) € K& (P2, 0,)

For attackers with any
observation capabilities

|

|

P

|2

e

IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:

V(mo, ty, t,). Vn.[3w € Q(t;, t.)| Vo,. KL(p,,w(0,)) C K2(p,,0,)

[Exists lockstep pairings of observations from t, to t1]

|

|

P

|2

e Ef@
~CD @

IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
(Mo, tr, ;). ¥n. Jw € Qts, t,) ¥0a] K5(pa,w(02)) C K (p2, 02)

[For any observation o, of size n on the trace tg]

|

|

P

|2

w(02)

e e

IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
(Mo, th,12). V. 3w € Qt,,1,). Y0,. [Kf(pa,w(02)) € K& (P2, 02)

KC, derived from w(0,)
is a subset of
IC, derived from o,

t |

tE—-E) 8- -

w(oz) ri1

M
- D 8- @

PROOF TECHNIQUE

SUFFICIENT CONDITION FOR AN IFP TRANSFORMATION

m Lockstep pairings from memory address of the trace t,
m Each address of t, is paired to:

» a lockstep address of t; OR
» a constant

B0 (Mo, b, 1) Vs, i ta[i](as) = {t1[i](ai(az)) if aj(a,) € Address

a;(ay) if aj(a,) € Bit
ty
) —
(O] (0] :

) — g
2

TRANSLATION VALIDATION FOR REGIS-
TER ALLOCATION

REGISTER ALLOCATION

m Introduce spilling of values in the stack
m Usually not IFP:

» Duplication on both stack and registers
> Erasure may not be applied to both locations

Example with a 2-register machine:

def p2(ri1,r2,stack_salt):

stack k = ra
def pi(k,t,salt): r1 = stack_salt
k = tmp + k
r2 = stack_k
return k
r2 = ri + r2
return r2

REGISTER ALLOCATION

m Introduce spilling of values in the stack
m Usually not IFP:

» Duplication on both stack and registers
> Erasure may not be applied to both locations

Example with a 2-register machine:

def patras ack _salt):
def pa(k,t,salt):

tmp = t 1. . : -
K 0 tmID[Secret value is duplicated] ri
return and not erased on the stack K_k

I r2 = ri + r2
return r2

VALIDATION AND PATCHING TOOLCHAIN

m Validator verifies the sufficient condition

m Detected leakage are patched

o

—

Source

P2

Trans-
formed

Validator

1\

performs
Analysis

validated ‘

Ps

rechecks

patches p,

rejected

COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def p2(ri1,r2,stack_salt):
e stack_k = ra

def pi(k,t,salt):

ria = stack_salt
e tmp = t + salt) ‘1= 1o 4
S5 Wl r2 = stack_k

e return k

r2 = ri + r2
e return r2

R« r
t r2
salt « stack_salt

COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def p2(ri1,r2,stack_salt):
e stack_k = ra

def pi(k,t,salt):

ria = stack_salt
e tmp = t + salt) ‘1= 1o 4
S5 Wl r2 = stack_k

e return k

r2 = ri + r2
e return r2

R« r

t « r2
salt <« stack_salt

kR <« stack_R

COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def p2(ri1,r2,stack_salt):
e stack_k = ra

def pi(k,t,salt):

ria = stack_salt
e tmp = t + salt) R —
S5 Wl r2 = stack_k

e return k

r2 = ri + r2
e return r2

salt <+ r1
t « r2
salt <« stack_salt
kR <« stack_k

COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def p2(ri1,r2,stack_salt):
e stack_k = ra

def pi(k,t,salt):

ri = |
e tmp = t + salt N ri B i;af(;ialt
S5 Wl r2 = stack_k

e return k

r2 = ri + r2
e return r2

tmp <+ r1
t <« r2
salt <+ stack_salt
kR« stack_k

COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def p2(ri1,r2,stack_salt):
e stack_k = ra

def pi(k,t,salt):

ri = |
e tmp = t + salt N ri B i;af(;ialt
S5 Wl r2 = stack_k

e return k

r2 = ri + r2
e return r2

tmp <« r
R r2
salt <+ stack_salt
kR« stack_k

COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def p2(ri1,r2,stack_salt):
e stack_k = ra

def pi(k,t,salt):

ria = stack_salt
e tmp = t + salt) ‘1= 1o 4
L0 L r2 = stack_k

e return k

r2 = ri + r2
e return r2

tmp <« r
R r2
salt <« stack_salt
?7 « stack_R

COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def p2(ri1,r2,stack_salt):
e stack_k = ra

def pi(k,t,salt):

ria = stack_salt
e tmp = t + salt) ‘1= 1o 4
S5 Wl r2 = stack_k

e return k

r2 = ri + r2
e return r2

tmp <« r
R« r2
salt <« stack_salt
Leakage| ? <« stack_k

PATCHING LEAKAGE

Leakage are patched with constant values

def p2(ri,r2,stack_salt):
e stack_k = ria

def pi(k,t,salt): ri1 = stack_salt
e tmp = t + salt) ri = r2 + ri

k = tmp + k r2 = stack_k
e return k r2 = ri + r2

| stack_k = o
e return r2

tmp <« r
R« r2

salt « stack_salt
0 <+ stack_R

EXPERIMENTS

m Observation points are placed at function calls and returns
m On the verified compiler CompCert’

m We measure the impact of patching on the programs

m Correctness is ensured by CompCert original validator

m Patching of duplication was not implemented here

"Formal Certification of a Compiler Back-end, Leroy [2006]

O
=
I
2
&
L
o
|
<
2
=
O
=
o
>
2]
<
L
=

[Time overhead

- ulluad

- UdUusqewe
- dsyy

Fqy

EVETY

3 QEosu

- OPR03dNUY
sl

r€eys

- [e11dads
34

- .VNCMMCQ._m

- S93nAleuiq
- Teys

- Apoqu

- Sop

- Ydewn

- 329siq

- 101q[epuew
- S}gens)su

L \SE

- Yanjuuey

80 1

T
o
©o

o

<
abejuadiad

T
o
o~

0- Dnn::________nnnnntlﬂ[l[l

J

- Ulluad

- YdUusqgew e
-dsyy

rqy

- 9A3ISU

3 QEocu

- wU._uow_UDCv_
sl

- €eys

- 184103ds
B

- VN:mmEQ._w
- Teys

- Apoqu

- Soe

- Ydewn
r129siq
-101q[epuew
- SHgaAs sy
L \SE

- Y2Myuuey

Er,,,,__LJ_LMJJEJJJ

[Executed instructions overhead

[Time overhead

T T
o o o o
© ~N

<
abejuadiad

0-

O
=
I
=
&
L
o
|
<
2
=
O
=
o
>
2]
<
L
=

RELATED WORK AND CONCLUSION

RELATED WORK

m Securing a compiler transformation’?

» preserve programs that do not leak
> does not differentiate between degrees of leakage

m Preservation of side-channel countermeasures3
» framework to preserve security properties
> different leakage model
» use a 2-simulation property

"Securing a Compiler Transformation, Deng and Namjoshi [2016]
2Securing the SSA Transform, Deng and Namjoshi [2017]
3Secure Compilation of Side-Channel Countermeasures, Barthe et al. [2018]

FUTURE WORK

m Towards a secure IFP compiler

> More compilation passes
> Better performance of patching

m Refine our IFP property

» Current property is bound by observation points
» Could attackers observe at any time?

m Other Models of Attackers

» Speculative Attackers
» Hamming Weight Model

Thank you for listening

Contact me!
alexandre.dang@inria.fr

	Getting Familiar with IFP
	Formal Definition of IFP
	Proof technique
	Translation Validation for Register Allocation
	Related work and Conclusion
	References

