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ARE COMPILERS TRUSTWORTHY?

What is the expected guarantee?

Semantic preservation
If beh(S) # () Then beh(T) C beh(S).

1. If source is deterministic, target has same behaviour.
2. If source has undefined behaviour, all bets are off.

Beware: aggressive optimisations exploit undefined behaviours'.

Formal verification: CompCert, Vellum, CakeML

"Undefined behavior: what happened to my code? Wang et al. [2012]



FUNCTIONAL CORRECTNESS OF TARGET CODE

Hyp1: My compiler is free of bugs (e.g., LLVM)

Hyp2 : My program has no undefined behaviour (e.g., Linux
kernel)

Functional properties are preserved.

= | can reason at source level!



SECURITY PROPERTIES OF TARGET CODE?

Compilers may enhance security
shadow stack, canaries, security instrumentation

Compilers may also break security counter-measures’

m Introduction of jump breaks CT-programming

m Associativity of xor breaks masking

m CSE breaks Fault-Injection protection

m (Dead) code removal breaks CFl;breaks safe erasure
= Cryptographers do not trust compilers.

"The Correctness-Security Gap in Compiler Optimization, D'Silva et al. [2015]



LONG-TERM GOAL: A SECURE COMPILER

A secure compiler does not break/remove security
counter-measures.

Attackers do not get an advantage at attacking the target.
Research Agenda

m Define classes of attackers.
m Revisit/Patch existing compiler passes.



TODAY

Information-Flow Preservation

Attackers should not learn more information from the Target
than from the Source.

Attacker model

Passive observation of (arbitrary) memory content.

Contributions
m Formal definition of an IFP’
m Sufficient condition to ensure IFP
m Application to Register Allocation

"Information-Flow Preserving



GETTING FAMILIAR WITH IFP




SEC. REQ. 1.: ERASE SENSITIVE DATA

Dead Store Elimination (DSE) is not secure’

def crypt(key, t): DSE | def crypt(key, t):

c = key " t y <= key * t
key = 0 skip
return c return c

"Dead Store Elimination (Still) Considered Harmful, Yang et al. [2017]



SEC. REQ. 2: REDUCE THE LIFETIME OF SENSITIVE DATA

Code motion is not secure.

def pa(x):

X = 0
eevil()
e return a

a =X * ...

def p2(x):

a = X * ...

oevil()
X =0
ereturn a




SEC. REQ. 3: LIMIT LEAKAGE OF INFORMATION

Common Expression Elimination is not secure.

def p1(x,y): de{mg2£x),(yz.y
a=(x+y)+z M acotmp -z
8= es g oz b = tmp + 2
e return e return




SEC. REQ. 4: DO NOT DUPLICATE SENSITIVE DATA

Register Allocation is not secure.

def p2(ri1):
def p1(x): stacki = ra
e N ...
e return ri1 = stack1
e return




INFORMATION-FLOW PRESERVATION

IFP protects against:
m Data remanence
m Lifetime extension
m Increased information leakage
m Duplication of information



FORMAL DEFINITION OF IFP




EXECUTION MODEL

m Trace based execution model
m Memory states: data observable by attackers

Execution

. Program of p
Initial memory with mo Trace t
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ATTACKER MODEL

m Attackers know the code
m Attackers observe n bits in the trace

Trace t
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ATTACKER MODEL

m Attackers know the code

m Attackers observe n bits in the trace




RATIONALE FOR HIERARCHY OF ATTACKERS

def crypt(key, t): def crypt(key, t):
c = key * t ) c = key " t
key = 0 skip
ereturn c e return c

Haha! I've learned
the value key = c't
oo-bit oo-bit

m equally insecure for a strong attacker




RATIONALE FOR HIERARCHY OF ATTACKERS

def crypt(key, t):
c = key * t
key = 0
ereturn c

S o

oo-bit  1-bit

Nothing on key

def crypt(key, t):

AN

) c = key t
skip
e return c
lcangeta @
bit of key!
1-bit  oco-bit

m equally insecure for a strong attacker
m p1is secure for the 1-bit attacker




ATTACKER KNOWLEDGE

m Attackers try to guess the initial memory used
m Possible initial memories matching its observations

Attacker Knowledge

)+

"Gradual Release: Unifying Declassification, Encryption and Key Release
Policies, Askarov and Sabelfeld [2007]




ATTACKER KNOWLEDGE

m Attackers try to guess the initial memory used
m Possible initial memories matching its observations

Attacker Knowledge

Remark:

Big/coarse attacker
knowledge means that there
is few information on mg

DB~ S

'"Gradual Release: Unifying Declassification, Encryption and Key Release
Policies, Askarov and Sabelfeld [2007]




IFP TRANSFORMATION (1/2)

Any information that can be learned with a trace observa-
tion of the transformed program can also be learned with
the source program

auea

source

Haha!
I've learned
value of x

transformed
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IFP TRANSFORMATION (1/2)

Any information that can be learned with a trace observa-
tion of the transformed program can also be learned with
the source program

Sorry mate, you
could already
find it up here
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IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
V(mo, ty, t,). Vn. Jw € Q(t;, t,). Vo,.  Kh(pq,w(0,)) € K2(p,, 0,)



IFP TRANSFORMATION (2/2)
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IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:

V(mo, ty, t)| Vn. Jw € Q(t;, t,). Vo,.  Kh(pq,w(0,)) € K2(p,, 0,)

For any execution from
the same initial memory m,
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IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
(Mo, t,, 1) [¥N) 3w € Qt,, ). VO, K§(pr, w(02)) € K& (P2, 0,)

For attackers with any
observation capabilities
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IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:

V(mo, ty, t,). Vn.[3w € Q(t;, t.)| Vo,. KL(p,,w(0,)) C K2(p,,0,)

[Exists lockstep pairings of observations from t, to t1]
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IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
(Mo, tr, ;). ¥n. Jw € Qts, t,) ¥0a]  K5(pa,w(02)) C K (p2, 02)

[For any observation o, of size n on the trace tg]
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IFP TRANSFORMATION (2/2)

A transformation from p, to p, is IFP iff:
(Mo, th,12). V. 3w € Qt,,1,). Y0,. [Kf(pa,w(02)) € K& (P2, 02)

KC, derived from w(0,)
is a subset of
IC, derived from o,

t |
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PROOF TECHNIQUE




SUFFICIENT CONDITION FOR AN IFP TRANSFORMATION

m Lockstep pairings from memory address of the trace t,
m Each address of t, is paired to:

» a lockstep address of t; OR
» a constant

B0 (Mo, b, 1) Vs, i ta[i](as) = {t1[i](ai(az)) if aj(a,) € Address

a;(ay) if aj(a,) € Bit
ty
) —
(O] (0] :

) — g
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TRANSLATION VALIDATION FOR REGIS-
TER ALLOCATION




REGISTER ALLOCATION

m Introduce spilling of values in the stack
m Usually not IFP:

» Duplication on both stack and registers
> Erasure may not be applied to both locations

Example with a 2-register machine:

def p2(ri1,r2,stack_salt):

stack k = ra
def pi(k,t,salt): r1 = stack_salt
k = tmp + k
r2 = stack_k
return k
r2 = ri + r2
return r2




REGISTER ALLOCATION

m Introduce spilling of values in the stack
m Usually not IFP:

» Duplication on both stack and registers
> Erasure may not be applied to both locations

Example with a 2-register machine:

def patras ack _salt):
def pa(k,t,salt):

tmp = t 1. . : -
K 0 tmID[Secret value is duplicated ] ri
return and not erased on the stack K_k

I r2 = ri + r2
return r2




VALIDATION AND PATCHING TOOLCHAIN

m Validator verifies the sufficient condition

m Detected leakage are patched

o

—

Source

P2

Trans-
formed

Validator

1\

performs
Analysis

validated ‘

Ps

rechecks

patches p,

rejected




COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def p2(ri1,r2,stack_salt):
e stack_k = ra

def pi(k,t,salt):

ria = stack_salt
e tmp = t + salt ) ‘1= 1o 4
S5 Wl r2 = stack_k

e return k

r2 = ri + r2
e return r2

R« r
t r2
salt « stack_salt
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COMPUTING PAIRINGS

m build pairings from address of p, to address/constant

def p2(ri1,r2,stack_salt):
e stack_k = ra

def pi(k,t,salt):

ria = stack_salt
e tmp = t + salt ) ‘1= 1o 4
S5 Wl r2 = stack_k

e return k

r2 = ri + r2
e return r2

tmp <« r
R« r2
salt <« stack_salt
Leakage| ? <« stack_k




PATCHING LEAKAGE

Leakage are patched with constant values

def p2(ri,r2,stack_salt):
e stack_k = ria

def pi(k,t,salt): ri1 = stack_salt
e tmp = t + salt ) ri = r2 + ri

k = tmp + k r2 = stack_k
e return k r2 = ri + r2

| stack_k = o
e return r2

tmp <« r
R« r2

salt « stack_salt
0 <+ stack_R




EXPERIMENTS

m Observation points are placed at function calls and returns
m On the verified compiler CompCert’

m We measure the impact of patching on the programs

m Correctness is ensured by CompCert original validator

m Patching of duplication was not implemented here

"Formal Certification of a Compiler Back-end, Leroy [2006]
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RELATED WORK AND CONCLUSION




RELATED WORK

m Securing a compiler transformation’?

» preserve programs that do not leak
> does not differentiate between degrees of leakage

m Preservation of side-channel countermeasures3
» framework to preserve security properties
> different leakage model
» use a 2-simulation property

"Securing a Compiler Transformation, Deng and Namjoshi [2016]
2Securing the SSA Transform, Deng and Namjoshi [2017]
3Secure Compilation of Side-Channel Countermeasures, Barthe et al. [2018]



FUTURE WORK

m Towards a secure IFP compiler

> More compilation passes
> Better performance of patching

m Refine our IFP property

» Current property is bound by observation points
» Could attackers observe at any time?

m Other Models of Attackers

» Speculative Attackers
» Hamming Weight Model



Thank you for listening

Contact me!
alexandre.dang@inria.fr
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