/////

EEEEEEEEEEEEEEEEEE
IIIIIIIIIIIIIIIIIII

The future of security
protocol analysis: .
Towards provable

guarantees for apps?

Cas Cremers | Rennes | June 2024

Ve,

%>

Historical context

« Computational Security reductions:
— Goldwasser, Micali, Yao, 1970s

— Game hopping and others: Shoup,
early 2000s

- Symbolic analysis
— origins in Dolev-Yao, early 1980s

— Automated tools mid 1990s (Maude-
NPA, Casper/FDR)

— Modern tools since 2000s (Tamarin,
ProVerif)

« We have been proving things secure for
half a century!

Ve,

-

TR\

Many success stories

* Signal

e TLS 1.3

 Monero (Cryptocurrency transactions)
« SPDM 1.2

« EMV (Chip-and-Pin)

« [IEEE 80211 (WIiFi)

« 5G-AKA

« Voting protocols

\ lll

Case Study: Secure Messaging

//ll T\

 Signal protocol implemented in libsignal and integrated into many apps
— WhatsApp
— Signal (the App)
— Facebook Messenger

— Skype Private Conversations

I
\\/
-

%0\

Proof of Security in 2016

Cryptology ePrint Archive papers ¥ Submissions ~ Ab

paper 201 6/1013 Metadata

A Formal Security Analysis of the Signal Messaging Available format(s)
Protocol

Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt and Douglas Stebila Category

Abstract Cryptographic protocols

The Signal protocol is @ cryptographlc messaging protocol that provides end-to-end publication info

encryption for instant messaging in WhatsApp, Wire, and Facebook Messenger among many

others, serving well over 1 billion active users. Signal includes several uncommon security published elsewhere. M
properties (such as nfuture secrecy" or "post-compromise security"), enabled by 2 novel |EEE EuroS&P 2017
technique called xratcheting™® in which session keys are updated with every message sent.

Keywords

We conduct a formal security analysis of Signal's initial extended triple Diffie-Hellman (X3DH)

L ~mhle Ratchet protocols as @ multi-stage authenticated key exchange

. cam aketract protocol, future secrecy

Sle brd

I

., . “Limitations” in IACR eprint 2016/1013

6. Limitations

Ac o fi=ot analvgig of a complex protocol, we have chosen (some) simplicity over a full analysis of all of
"¢ our presentation and model can serve as a starting point for future analyses.
‘ures included in Signal which we have explicitly chosen not to model and

Parts of libsignal
not used by Signal-
the-app

_Aibrary components. The open-source libraries contain various sections of
_wpart of the Signal protocol. For example * " variant of the

Doubie racner . >y Pond and included in the referenc~ . ~itself.
Likewise, there is suy, t for online key exchanges instea:” Usi ng the same)
not intended to be part of the Signal protocol, we do no Curve 25519 key for

Out-of-band key verification. To reduce the trust requireme. 2 2 /
mechanism for verifying public keys through an out-of-bana.. signing a nd DH _and

medium-term public key distribution is honest, and do not analyse —warnel.

Same key for Ed25519 signing and Curve25519 DH. Signal uses the sa.«e’key ik for DH agreement and for
signing the medium-term prekeys’. [28, 60] prove security of a similar scheme under the Gap-DH assumption,
effectively showing that the signatures can be simulated using the hashing random oracle. We conjecture a

similar a7~ nat prove it; instead, we omit the signatures from consideration and
ep© > This enforced authentication means we do not capture the
Out-of-order _uty key and then inserts a malicious signed pre-key.
deli ,sages, users must store message keys until the messages
elivery
a. . in Section 5 we do not consider this storage.
Simultan. . —-~a mechanism to deal silently with the case that Alice and Bob

simultaneously initiate-a-session with each other. Roughly, when an agent detects that this has happened they
deterministically choose one party as the initiator (e.g. by ~orting identity public keys and choosing the smaller),
and then complete the session as if the other party had n ~mount of trial and
error: agents maintain multiple states for each peer, ~ ~< in all of
them. We do not consider this mechanism.

Session handling

“A Formal Security Analysis of the Signal Messaging Protocol”, Cohn-Gordon, Cremers, Dowling, Garratt, Stebila; Euro S&P 2017 / IACR eprint 2016/1013

Implementation
2scribes key indistinguishability of two-party multi-stage key
threats ‘ionality goals which Signal may address but which we do
Do, _ties'’, message sharing across multiple devices, voice and video
call secury, g U-Tound-trip modes), privacy, and deniability.

Implementation-specific threats. We make various assumptions on the components used by the protocol. In
particular, we do not consider specific implementations of primitives (e.g. the particular choice of curve), instead
assuming standard security properties. We also do not consider side-channel attacks.

Tightness of the security reduction. As pointed out in [2], a limitatior "~ =roofs
for AKE protocols is that they do not provide tight reductions -~
depend on guessing the specific party and session under attac’ Does t|g htness

huge amounts of sessions, such as Signal, this leads to an ¢

some new AKE protocols with tight reductions, their protos " matter?

In particular, there is currently no known technique fur vomsuuvu. _ -
Signal protocol. As a result, our analysis has a significantly large factor ... _waSECUTity
reduction. Specifically, we lose at minimum a factor of (np? - ng) to our reduction to the Gap Diffie-Hellman
assumption. Unfortunately, attempting to instantiate the Signal protocol with parameter sizes that our analysis
suggests would be secure would not be compatible with parameter sizes that Signal implementations currently
use. Indeed, implementing Signal with such parameter sizes would incur significantly more computational cost,
a difficult proposition for mobile devices. One might argue about the practical relevance of such an analysis,
however the current proof does provide c»== "~ ~*<_about the security of the Signal protocol, as
well as a qualitative indicator of ~aver, the structure of the proof itself

may be useful in future ree Different w ays o f f the security reduction.

using libsignal parts

Application Variants. Popular applicati _.goiguarwena 10 change important details as they implement or
integrate the protocol, and thus merit security analyses in their own right. For example, WhatsApp implements
a re-transmission mechanism: if Bob appears to change his identity key, clients will resend messages encrypted
under the new value. Hence, an adversary with control over identity registration can disconnect Bob and replace
his key, and Alice will re-send the message to the adversary.

I

N /
-

Signal more in-depth

%>

« What is Signal trying to achieve?

« “Secure Messaging”
— Diffie-Hellman with a lot of keys and even more key rotation

— Some form of deniability through implicit key exchange

\\,/

Post-Compromise Security (PCS)

-
TR\

(Perfect) Forward Secrecy (PFS) Post-Compromise Security (PCS)
Secret va Secret
%eA

: time
Healing

Attacker controls the network, and
compromises a device at some point

9 “On Post-Compromise Security”; Cohn-Gordon, Cremers, Garratt; CSF 2016

I
\\/
-

%>

10

Why is Post-Compromise Security (PCS) useful?

» Older protocols do not ensure PFS

— Compromise allows adversary to decrypt any stored (E.9. TLS 1.2)
message, past or future

 Newer protocols ensure PFS

— Compromise allows adversary to decrypt all future (E.9. TLS 1.3)
messages

 Newest protocols also ensure PCS

— Compromise only allows adversary to decrypt until next
healing (E.g. Signal)

— Thus, to maintain decryption, must interfere with all
subsequent messages

“On Post-Compromise Security”; Cohn-Gordon, Cremers, Garratt; CSF 2016

I
\\/

How Signal works (and achieves PCS)

%>

® UX3DH”

— Initial key exchange

 “Double Ratchet’

— Asymmetric Ratchet: — Symmetric Ratchet:
— New Diffie-Hellman with each — Ensure message keys are
ping-pong communication, and Independent even if Bob

combine this with previous secret does not respond

T

\"I

N /
>

Signal’s message key derivation

%>

Identity Key Prekey Ephemeral Key

Alice ik / ipkA ek™ / ePkA

Bob ik? 1 ipkB prekB / prepkB eprekB / eprepkB

12

\"I

N /
>

Signal’s message key derivation

%>

Identity Key Prekey Ephemeral Key
Alice ik / ipkA ek™ / ePkA
/ \
Y -— a \Q

ms = (prepkB)""A | (ipkB)"”‘A | (prepkB)ekA I (eprepkB)‘”‘A
4

—— g
/
< ,
/
VA

Bob ik? 1 ipkB prekB / prepkB eprekB / eprepkB

13

I
\\/
=

%>

Signal’s message key derivation

14

Alice

Bob

Root Key

Chaining Key

Message Key

Ephemeral Key

Ratchet Key,

rchki' | rchpk

Identity Key Prekey
ik 1 ipk? ek? | epk?
///7/’7\ \
v — a R
(prepk®)™ ||l (ipk®)" | Il | (prepk®)<” | Il | (eprepk®)="
4

—

/
/
L

eprekB / eprepkB

ik? 1 ipkB prekB / prepkB
Y
(prepkB)rchkg -
[
> E rkl

-

ckg o g
mkf)fo

%>

15

Alice

Bob

Root Key

Chaining Key

Message Key

Ephemeral Key

. _ Signal's message key derivation

Ratchet Key,

Identity Key Prekey
ik 1 ipk? ek? | epk? rchki' | rchpk
/ \
v — P < ‘
(prepk®)& ||| | (ipk®)"* | | | (prepk®)e* | || | (eprepk®)e<" —| (rchpkB yrehks
4 A

—

/

/
ra

rchkl | rchpk§

Y
KDF,.

ik? 1 ipkB prekB / prepkB eprekB / eprepkB
Y
(prepkB)rchkg -«
[
> E rkl
g
ar N E
CKo,0 X
mkf)fo

T
CK1 0

|
‘+K,DF,n _

(&)
mkl,o

I
\\/
=

%>

Signal’s message key derivation

16

Identity Key

Alice ik 1 ipk?

Prekey

-— a

Ephemeral Key

Ratchet Key,

ek? | epk? rchki' | rchpk

Ratchet Key;

rehidt | rchpks

/ i

—| (rehpkg)48

ms = (prepkB)ikA

Y

(ipk?)<" | || | (prepk®)e+*

///7 \1 Y P
(rchpkB)t | | (rchpk B yrehic!

3

I (eprepk®)*”
4

A

/

Bob ik? 1 ipkB prekB / prepkB eprekB / eprepkB rchk(]]B / rchpkOB rchkf / rchpkf’
Y
(prepkB)rchkg -«
[[N
Root Key - @ rk, - @ - @ rko
g g |
.. : = : e :
Chaining Key ckoo [8 ckilo [2 _I cky o
mkf)fo mk’l'fo

Message Key

I
\\/
=

%>

Signal’s message key derivation

17

Alice

Bob

Root Key

Chaining Key

Message Key

Ephemeral Key

Ratchet Key,

Ratchet Key;

Identity Key Prekey
ik* | ipk? ek? | epk® rchki' | rchpk rehidt | rchpks
/ \ /

Y . - ¢ Y Pl Y
(prepk®)<* | ||| (ipk®)™* | || | (prepk®)e<* | || | (eprepk®)ec”* (rchpkB)rehs | | (rehpkB)k | | (rehpk?)rehis’
e ’ “ |
ik? 1 ipkB prekB / prepkB eprekB / eprepkB rchk(]]B / rchpkOB rchkf / rchpkf’

Y
(prepkB)rchkg -«
: :
» < > G > < rk2
g g S
ar N E . ir > E ir T > B > T T
CKo,0 2 "l CKo,1 = ckoo CK1.0 = 1 Sk CK3 0
mkf)fo mkffl mk’l'fo

I

State-of-the-art

=
%>

« 2016. "A Formal Security Analysis of the Signal Messaging Protocol” (IACR eprint
2016/1013)

» 2018: “The Double Ratchet: Security Notions, Proofs, and Modularization for the
Signal Protocol” (2018/1037)

« 2019: “A Unified and Composable Take on Ratcheting” (2019/694)

« 2019: “Multi-Device for Signal” (2019/1363)

« 2022: "A more complete analysis of the Signal Double Ratchet” (2022/355)
« 2022: “Universally Composable End-to-End Secure Messaging” (2022/376)

» +|ots of works on faster healing variants and trade-offs, for example:

— 2023:"How fast do you heal? A taxonomy for post-compromise security in
secure-channel establishment”, Blazy et al

« 2024: PQXDH Post-quantum Signal initial key exchange

18

\"I

~ There is more!

TR\

19

I
\\/

There is more to Signal-the-App

-
%>

Session management
(Sesame)

Key exchange
(X3DH)

\\’/

\Il

What Signal is actually doing

%>

Alice stores up to 40
One hain sessions with Bob

betw e and (per device)

One session is
marked as the
“active” session

User interface
merges messages
from all sessions and
chains (invisible to
user)

When Alice receives
OoNn a session, she sets
It as the active one

When sending, Alice
sends to active
session

In case of a
decryption error,
Alice will start a new
session

21 “Formal Analysis of Session-Handling in Secure Messaging: Lifting Security from Sessions to Conversations”; Cremers, Jacomme, Naska; USENIX 2023

I

Session handling: Why?

=
%>

« The SESAME protocol (part of libsignal) deals with session handling

« Clients might lose chain state
— A bitis flipped in memory
— Restore a backup
— Phone broken/lost, get a new one

« Messages might be delayed in-flight

* If Bob loses his chain state, can he ever talk to Alice again?

22 “Formal Analysis of Session-Handling in Secure Messaging: Lifting Security from Sessions to Conversations”; Cremers, Jacomme, Naska; USENIX 2023

e,

- _ Impact on PCS

%>

« Post-Compromise Security is not achieved for users in reality

@ Alice

@ Bob

time

23 “Formal Analysis of Session-Handling in Secure Messaging: Lifting Security from Sessions to Conversations”; Cremers, Jacomme, Naska; USENIX 2023

e,

- _ Impact on PCS

%>

« Post-Compromise Security is not achieved for users in reality

Adversary
) (compromises
Alice)

% time

Compromise

24 “Formal Analysis of Session-Handling in Secure Messaging: Lifting Security from Sessions to Conversations”; Cremers, Jacomme, Naska; USENIX 2023

e,

- _ Impact on PCS

%>

« Post-Compromise Security is not achieved for users in reality

Adversary
) (compromises
Alice)

5@

Compromise Healing

25 “Formal Analysis of Session-Handling in Secure Messaging: Lifting Security from Sessions to Conversations”; Cremers, Jacomme, Naska; USENIX 2023

e,

- _ Impact on PCS

%>

« Post-Compromise Security is not achieved for users in reality

Adversary
) (compromises

Alice)

B e ®
5@

€Y oo
Compromise Healing

26 “Formal Analysis of Session-Handling in Secure Messaging: Lifting Security from Sessions to Conversations”; Cremers, Jacomme, Naska; USENIX 2023

e,

- _ Impact on PCS

%>

« Post-Compromise Security is not achieved for users in reality

Adversary
) (compromises

Alice)

@ Alice O

&Y oo
Compromise Healing

27 “Formal Analysis of Session-Handling in Secure Messaging: Lifting Security from Sessions to Conversations”; Cremers, Jacomme, Naska; USENIX 2023

\‘\' ,’h/

‘lll'/'

3

N

28

(Surely this is solved for the newest group messaging standard, MLS?)

“On Ends-to-Ends Encryption: Asynchronous Group Messaging with Strong Security Guarantees”, Cohn-Gordon , Cremers, Garratt, Millican, Milner; ACM CCS 2018

I

N /
-

So why use a complex ratchet?

%>

 We are currently writing up how to solve this and what cannot be achieved
— Possibility & Impossibility results

 ETA: A few weeks (IACR eprint)

29

I
\\/

But wait, there's even more!

-
%>

Link new device

Session management

(Sesame) Message

backups

Key exchange
(X3DH)

The wider picture
beyond Signal & beyond messaging

. Proof methodologies scale

Structural " badly
problems

Il. Composition results too
limited

I[l. No consistency of threat
models/properties across
abstraction levels

I
\\/

%>

33

Proof methodologies do not scale sufficiently

* Analyzing concurrent instances against network attacker remains a
challenging problem

 Many brave attempts at large objects with various methodologies!

« Symbolic tools such as Tamarin can reach the largest scope for protocols

— we expect growth, but not two orders-of-magnitude

I

N /
-

Composition results too limited

%>

If monolithic proofs don’t scale, split into smaller parts? Literature has many!
— P(X) & P'(Y) => P"(Composition(X,Y))

* but often only consider a limited
— Class of protocols,
— Class of properties, or
— Adversary model

« Examples:
— Symbolic results often very limited adversary (eg lacking equational theories)
— Real-world protocols share state, keying material, and primitives
— Properties like PCS not covered

34

I

N /
-

Universal Composability?

%>

 The UC framework:
1. Way to specify security properties (ideal functionality),
2. Methodology to prove that a construction realizes a functionality, and

3. Guaranteeing that realized functionalities safely compose with others

* In reality, we see it mostly used to specify & prove (1 & 2).

35

I

N /
-

3. Inconsistency of guarantees and threat models

%>

* Problem with multiple levels of abstraction: _
_ Banking app
— We prove great properties at the lowest level...

— Which we don’t need and don't use at the next level

« Examples:

“secure channels”

— At level of a banking app:
— cannot even formulate forward secrecy anymore

— many subtly different channels in reality

TLS13/SMS/QR
/ Trusted card readers

36

I

N /
-

3. Inconsistency of guarantees and threat models

%>

* Problem with multiple levels of abstraction:

_ Signal app
— We prove great properties at the lowest level...
— Which we don't need and don't use at the next level
« Examples: Message history in app

— Resilience against state-reveal of protocol
— =2 app level state-reveal?
— take messages from history?

— Resending messages upon adding new device?

Protocol resilient
against
state reveal

37

I
\\/

- _ 3. Inconsistency of guarantees and threat models

%>

* Problem with multiple levels of abstraction:
_ Web browser
— We prove great properties at the lowest level...

— Which we don’t need and don't use at the next level

« Examples:
Can only visit page

— Key indistinguishability of Key Exchange protocols if you know session key

— =2 use with AEAD next?

— Adversary can tell key from random at next level

Session key is
indistuinguishable
from random

38

W/ N

‘I "/‘

Theory versus practice

L)
K7 |\\\

* For messaging, super secure ratcheting is awesome!
— But does it still make sense when

— Users must still communicate after failures

— State might become corrupted

— Backend servers are not synchronized

« Should security researchers insist engineers use their
building blocks as-is?

— No, because researchers only see a fraction of the
requirements

39

I

N /
-

Good news: Formal analysis becoming the norm

%>

« Post-quantum versions of...

— Apple iMessage (PQ3) g
— Manual game-hopping computational analysis ‘
— Tamarin analysis

— Signal (PQXDH)
— ProVerif
— CryptoVerif

* But we need this for more types of applications, and more complete
analyses

40

R N/ Y

Il'

Conclusions!

%
%1\

« Amazing progress in provable security
« But we are very far from done

— We prove properties of a fraction
of small systems, and

— These properties often do not hold at
application level

 Invitation: let’s work towards apps!
« All of it will involve
— More consistency across abstraction levels

— Many more connection & composition
results

41 Cas Cremers — cremers@cispa.de

