Laura Kovács TU Wien

Laura Kovács TU Wien

Joint work with

Laura Kovács TU Wien

Joint work with

Joint work with

Decentralized Protocols – Complementary Views of Security

Can a malicious person steal my data?

Do I want to share my data?

Cryptographic Security

R Informatics

Game-Theoretic Security

Decentralized Protocols – Complementary Views of Security

R Informatics

This talk

Informatics

Decentralized Protocols – Game-Theoretic Security Analysis

Game-Theoretic Security

What are my **economic** gains/incentives doing so?

Informatics

Do I want to share my data?

Game-Theoretic Security

7

What are my **economic** gains/incentives doing so?

Do I want to share my data?

Acting **honestly** should be the best.

Informatics

Game-Theoretic Security

What are my **economic** gains/incentives doing so?

Do I want to share my data?

for(syte)

erc

for(syte, erc

Informatics

Our Vision: Automated Game-Theoretic Security Reasoning

Automated Game-Theoretic Security Reasoning

Game Theory

Game-Theoretic Models (CSF 2023)

players: A and B

actions: C_h , H, D, I, S and P

Simplified Closing Game (Bitcoin)

Simplified Closing Game (Bitcoin)

W Informatics

players: A and B

actions: C_h , H, D, I, S and P

Close unilaterally and honestly, do not consider previous moves.

Simplified Closing Game (Bitcoin)

players: A and B

actions: C_h , H, D, I, S and P

Close unilaterally and dishonestly, with profits d_A for A and d_B for B

Simplified Closing Game (Bitcoin)

Simplified Closing Game (Bitcoin)

WInformatics

Simplified Closing Game (Bitcoin)

WInformatics

Simplified Closing Game (Bitcoin)

WInformatics

Simplified Closing Game (Bitcoin)

Informatics

players: A and B

actions: C_h , H, D, I, S and P

utilities: (u_A, u_B) , terms of reals

- benefit of closing a channel: α >0
- opportunity cost: ε >0 (cost of closing)
- transaction fee: f>0

Simplified Closing Game (Bitcoin)

Informatics

players: *A* and *B* actions: C_h , *H*, *D*, *I*, *S* and *P* utilities: (u_A, u_B) , terms of reals joint strategy: one action per node honest behavior: intended scenario

Simplified Closing Game (Bitcoin)

R Informatics

A chooses

C_h: if *B* ignores (I), then funds are locked;
if B signs (S), then both players get the closing benefit *α*.

Simplified Closing Game (Bitcoin)

Informatics

A chooses

 C_h : if *B* ignores (I), then funds are locked; if B signs (S), then both players get the closing benefit α .

H: both players get benefits, but A waits for closing timeout;

Simplified Closing Game (Bitcoin)

Informatics

A chooses

 C_h : if *B* ignores (I), then funds are locked; if B signs (S), then both players get the closing benefit α .

- **H**: both players get benefits, but A waits for closing timeout;
 - D: if B ignores (I), the funds of B are lost;
 - if B proves (P) dishonest A, then funds A are given to B, with transaction fee f paid.

Is there a way to financially harm A?

Is deviating rational?

Simplified Closing Game (Bitcoin)

Honest behavior (C_h, S)

Is there a way to financially harm A? Yes: (C_h, I) , when a>0.

Is deviating rational?

Simplified Closing Game (Bitcoin)

Informatics

Honest behavior (C_h, S)

(C_h, S) is not Byzantine Fault Tolerant 🚫

Is there a way to financially harm A? Yes: (C_h , I), when a>0.

Is deviating rational?

Simplified Closing Game (Bitcoin)

Informatics

Honest behavior (C_h, S)

Simplified Closing Game (Bitcoin)

M Informatics

Honest behavior (C_h, S)

(C_h, S) is not Byzantine Fault Tolerant 🚫

Is there a way to financially harm A? Yes: (C_h, I) , when a>0.

> Is deviating from (C_h, S) rational? No: (C_h, S) yields fair splits.

Simplified Closing Game (Bitcoin)

W Informatics

Honest behavior (C_h, S)

(C_h, S) is not Byzantine Fault Tolerant

Is there a way to financially harm A? Yes: (C_h , I), when a>0.

(C_h, S) is Incentive Compatible √
Is deviating from (C_h, S) rational?
No: (C_h, S) yields fair splits.

Simplified Closing Game (Bitcoin)

M Informatics

(C_h, S) is not Byzantine Fault Tolerant

Is there a way to financially harm A? Yes: (C_h , I), when a>0.

(C_h, S) is Incentive Compatible √
Is deviating from (C_h, S) rational?
No: (C_h, S) yields fair splits.

Is deviating from (H) rational?

Simplified Closing Game (Bitcoin)

W Informatics

(C_h, S) is not Byzantine Fault Tolerant

Is there a way to financially harm A? Yes: (C_h, I) , when a>0.

(C_h, S) is Incentive Compatible √
Is deviating from (C_h, S) rational?
No: (C_h, S) yields fair splits.

Is deviating from (H) rational? Yes: (C_h , S) yields better results for A.

Simplified Closing Game (Bitcoin)

W Informatics

(C_h, S) is not Byzantine Fault Tolerant 🚫

Is there a way to financially harm A? Yes: (C_h , I), when a>0.

(C_h , S) is Incentive Compatible \checkmark

Is deviating from (C_h, S) rational? No: (C_h, S) yields fair splits.

(H) is not Incentive Compatible

 \bigotimes

Is deviating from (H) rational? Yes: (C_h , S) yields better results for A.

R Informatics

Blockchain Protocols as Games (CSF 2023)

Closing Game (Bitcoin)

R Informatics

Verifying Game-Theoretic Models (CSF 2023)

1. Incentive Compatibility (IC)

honest behavior always rational

2. Byzantine Fault Tolerance (BFT)

honest players never harmed

Security of Closing Game (CSF 2023)

Closing Game (Bitcoin)

Informatics

Is there are stopes to be stoped at the stope st

- incentive compatible?
- Byzantine fault tolerant?

Automated Reasoning via SMT in Real Arithmetic (CCS 2023)

Informatics

Automated Reasoning via SMT in Real Arithmetic (CCS 2023)

Is there a honest joint strategy?

Informatics

 \Leftrightarrow

Is there a model?

Example: SMT Encoding (CCS 2023)

CheckMate (CCS 2023)

 \forall total orders of $\alpha, \epsilon, \dots \exists$ joint strategy $\forall \phi$ integrated and e and e in $BBT(f (\alpha, \epsilon, \epsilon, \dots))$.

M Informatics

Security of Closing Game – Revisited (CSF 2023, CCS 2023, LPAR 2024)

Closing Game (Bitcoin)

Informatics

Is the honest behavior ...

– incentive compatible? \checkmark

– Byzantine fault tolerant? 🚫

→ ③ ③ 5 seconds execution time (2022)

CheckMate (CCS 2023, LPAR 2024)

R Informatics

for(syte, erc

CheckMate - Input Structure (LPAR 2024)

M Informatics

CheckMate - Output Structure (LPAR 2024)

Calling CheckMate on Simplified Closing Game:

- add honest behavior (H)
- remove initial constraint $a \ge f$

property	WEAK IMMUNITY
onest behavior	Is history [H] weak immune? Require case split on (> (- a f) 0.0)
case splits	Case $[(> (- a f) 0.0)]$ satisfies property. Require case split on (= (- a f) 0.0) Case $[(<= (- a f) 0.0), (= (- a f) 0.0)]$ satisfies property. Case $[(<= (- a f) 0.0), (distinct (- a f) 0.0)]$ violates property.
result	NO, it is not weak immune.
	Is history [C_H,S] weak immune? Case [] <u>violates</u> property. NO, it is not weak immune.

CheckMate Features (LPAR 2024)

R Informatics

github.com/apre-group/checkmate

Experimental Evaluation (LPAR 2024)

			С	urrent version		init
					\searrow	V
	Game	Nodes	Players	Histories	Time (v1)	Time (v0)
	$\mathrm{Splits}_{\mathrm{wi}}$	5	2	3	0.03	0.35
game-theoretic	$\mathbf{Splits_{cr}}$	5	2	3	0.03	0.35
	Market Entry	5	2	3	0.02	0.28
blockchain protocol	Simplified Closing	8	2	2	0.02	0.26
	Simplified Routing	17	5	1	0.02	0.31
	Pirate	52	4	40	1.07	27.08
	Closing	221	2	2	0.34	9.60
	3-Player Routing	$21,\!688$	3	1	6.83	242.54
	G (Figure 2)	5	2	1	0.02	0.18
	Centipede	19	3	1	0.07	0.48
	EBOS	31	4	1	0.02	0.53
	Auction	92	4	1	0.11	1.72
	Unlocking Routing	36,113	5	1	10.85	478.58
	Tic Tac Toe Concise	58,748	2	1	107.84	254.87
	Tic Tac Toe	549,946	2	1	TO	TO

Summary – Game-Theoretic Security

incentive compatibility, Byzan**tine aktivitatie**nce

game analysis

Informatics

game strategies, symbolic utilities,

. . .

security proof

