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6 Context & Motivation: Secu ritx Breaches

« Hospitals face cybersecurity attack leading to data breaches

French hospital suspends operations after cyber
attacks

A hospital in Versailles, near Paris had to cancel operations and transfer some patients after being hit by a
cyberattack over the weekend, France's health ministry said Sunday. Issued on: 05/12/2022 - 01:41

https://www.france24.com/en/france/20221205-french-hospital-suspends-operations-after-cyber-attacks
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NED Context & Motivation : Easy Facial Recognition

« An increase in the potential of facial recognition software
« Easily available through commercial software
 Needs less qualifications to be used

Amazon Rekognition C | edqa rV| eWw.d |




9 Motivation: Mandatorx Risk Assesment

Legal frameworks mandate the
quantification of privacy risks

These laws require the consideration evolving 5 kg

practices, available tools, and adversaries' * s g:;’:’a'

capacities. * a Bom o ition
* * Regulation

In GDPR, there is a strong emphasis on lofl

considering contextual factors and all
potential identification methods, especially
in light of technological advancements and
increased computing power.




Motivation: Better Evaluation Protocols

« Weak privacy protocol:
lackluster methods to
evaluate privacy risks of
imaging data




Motivation: Better Evaluation Protocols

 Weak privacy protocol:
lackluster methods to

evaluate privacy risks of Vﬂice priVﬂCY
imaging data Cna“enge

« We can leverage important ii;g5,15?,,&3;4;;{5[H§§W s
H H . 1L | . :[1 |L :, -
findings from other fields ' I}

such as the voice privacy h ot a

challenge
https://www.voiceprivacychallenge.org/

.

g

e.g., protocol, attackers,
privacy metrics...
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Privacy Evaluation Protocol




13 |dentification vs Verification

Identification: What is the identity tied to this data?
Verification: Are those two data from the same user?

0/1

:

Closed-set Open-set
identification verification



Evaluation of Privacy with Patient Verification

Private . . Shared MRI Individual Medical Prediction
Sanitization Q€A Diagnostic Study Model Training
e.g., defacing,

pseudonymization Downstream tasks
I Hospital

ﬁ User
- [8ezs -

O

Gathered =
Social L. e Pictures Llnkage
f networks beB Function (a,b) EAXB

Same 7 Different ?
‘% Attacker

A sanitized shared data (trial set)

B gathered pictures with (enrollment set)

Considering a linkage function LF(a,b) =s a€AandbeB

A pair (a,b) is called a trial, it is either mated H (i.e., same patients) or non-mated H




15 A quick word on privacy MetriCS maouche et sl interspeech 201

Different Metrics are applied:

EER = Pf::t(t,k ) = Priss(t7)
EER € ]0,0.5]

Higher means more errors
= More Privacy

Random Guess = 0.5

probability of

m false alarm
B miss

[DA Van Leeuwen & N Briimmer 2007]
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Linkage Attacks
Face recognition




J General Algorithm

3D MRI @
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Geo Attack

Extracting face’s landmarks

We detect landmark on the 2D images using a
model of the dlib package.

We compute geometrical features (distances,
angles, ratios)

Face recognition

Deep Attack

G,
)

deepface

Facial recognition model (VGG-Face)

We extract embeddings from 2D images
(photo or 2D MRI reconstruction)

We compute the distances between those

vectors.




Geometrical features (Geo)

@ T =0 b)) T=1 ) T =2 d T=3 (e) T =10 (f) Ground truth
Kazemi, CVPR, 2014

e Cascaded regressors
e Progressively refined and accurate facial landmark localization

http://dlib.net/face_landmark_detection.py.html



http://dlib.net/face_landmark_detection.py.html

Deep learning features (Deep)
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@ convolution+ReLU

@ max pooling
fully connected+ReLU

VGG Face [Parkhi, CVPR 2015]

e Deep convolutional network trained on an extensive dataset of facial images
e Passes facial images through its layers
e Extracts high-level features at multiple abstraction levels

https://pypi.org/project/deepface/
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General Algorithm

3D MRI @

Id-like photo No hair photo




Facial Hair Removal

No Facial hair No Beard RAW

0.5844 0.6771 0.7526

MRI

L2
Distance

Closer to the reconstruction



Facial hair removal

male training
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https://github.com/oneThousand1000/HairMapper W+ latent space



https://github.com/oneThousand1000/HairMapper

General Algorithm

3D MRI @

Id-like photo No hair photo




General Evaluation




29 Dataset

Data type: T2-weighted sagittal MRl imaging Turbo Spin Echo +
photograph collected

#tparticipants: 49 healthy volunteers
Age: 18-50

Location: HCL Lyon - Corentin Dauléac
Dates: 02-04/2022

Each volunteer provided their informed consent to participate in the
study and to be part of this work.

+ Social network photographs with Label Faces in the Wild (LFW)
dataset (500 persons)



30 Results — Linkage attacks

. . EER AUC Linkability
Method Facial hair Max 50% | Max 1 Max 1
Deepface Raw 41 .54 .07
Deepface Bald 32 71 18
Geo Raw 36 64 11 Results are better than random
Geo Bald 38 .64 13

-> privacy leakage

1.0

9 Deepface is highly sensitive to facial hair
(0]
o . . .
gos Removing hair increase the attack!
2 —— Auc=o.71
o 0.4 bald_geo
L ) AUC=0.64 ) ) )
SR —— raw.deep. No impact of removing hair on Geo
~'-' £ AUC=0.64 method

False Positive Rate



Results — Attribute inference

Protocol

We train using LFW a model on top of VGG-embeddings to infer sensitive
attributes from ID images or MRI reconstructions.

Attributes & Metrics

Attribute Task #Modalities  Metric Blelagt-1lp Ranele Worst
Guess Privacy
Age Regression R? [O,1] 0 1
Gender | Classification 2 Accuracy [O,1] 0.5 1
Ethnicity | Classification 5 Accuracy [0,1] 0.17 1




Results — Attribute inference

Type Gender Ethnicity
ID images 1.0 0.4
MR 0.6 0.4 0.8

reconstruciton

For Both Age & Ethnicity, the MRI leaks more information.

For Gender using photos was more efficient

This experience needs more investigation

(e.g., per class precision)




A lot of questions still remain...




Estimation of the orientation

005
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We use 3 points:

- Left eye extremity
Right eye extremity

- Chin center extremity

Real Image Landmarks
Rendered Image Landmarks
= Fgce Orientation




35 Importance of orientation of the reconstruction

Cosine Similarity
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Figure: Similarity depending on the azimuth of the capture.

[GhostFace model, cosine similarity]

In some cases the comparison is stable whatever the choice of azimuth/elevation.

Some other cases: the capture angles have a significant importance




< Many other open questions

Better models
Other models than VGG Face (e.g., GhostFaceNet)

Abandoning landmarks?
Switching to 3D landmarks.
More freedom == more errors?

Bridging the gap even more between reconstruction and photos
Black & white reconstructions compared to color photographs



Conclusion




@ Conclusion

« What have we discussed ?

 We advocate for an evaluation protocol based on verification

» Designed attacks to highlight the vulnerability of sharing MRI data

 |llustration of the impact of hair removal in MRI re-identification

« Many room for improvement
« Main goal still in sight

« Evaluation of the attacks on defacing techniques

a. b’ c. d.
Quickshear FaceMasking  Defacing
Schimke, 2011 Milchenko, 2013 Bischoff-Grethe, 2007




Thank you

Questions ?




