

# Security of foundation models: implications for downstream tasks, content protection and tracking

# Slava Voloshynovskiy

in collaboration with Brian Pulfer, Yury Belousov and Vitaliy Kinakh









## Agenda

- Problem formulation
  - A need for content protection and tracking
  - Advancement of Foundation Models (FM)
  - Advancement of Digital Watermarking Systems
  - Advancement of Content Tracking Systems
- Security of Foundation Models
- Security of Digital Watermarking
- Variability of Security of Various Foundation Models
- Conclusions

## **Data Origin: the source of data**

Physical Observations: Data collected from real-world phenomena, including environmental readings, health statistics, and economic indicators.











Multimedia devices

Medical imaging (X-ray, MRI, CT, US)

Remote sensing

Data from sensors (satellites, drones) (weather, traffic, wearables)

Lab instruments (microscopes)

Generative AI/ML: Data produced by artificial intelligence (AI) or machine learning (ML) models, such as synthetic images, text, or sounds, simulating real-world data.









ANTHROP\C



## **Data Use: applications and implications**

- By Humans: utilized in various sectors including educational content, news dissemination, entertainment, research, and decision-making.
- By Machines: employed for training and enhancing new AI/ML models.

## **Data Use: applications and implications**

 By Humans: utilized in various sectors including news dissemination, educational content, entertainment, research, and decision making.

#### **Associated Problems:**

- Disinformation: the spread of false information under the guise of being legitimate.
- Deep Fakes: highly realistic and convincing digital manipulations of audio or video content, often used maliciously.
- By Machines: employed for training and enhancing new AI/ML models.

## **Data Use: applications and implications**

 By Humans: utilized in various sectors including news dissemination, educational content, entertainment, research, and decision making.

#### **Associated Problems:**

- Disinformation: the spread of false information under the guise of being legitimate.
- Deep Fakes: highly realistic and convincing digital manipulations of audio or video content, often used maliciously.
- By Machines: employed for training and enhancing new AI/ML models.

#### **Associated Problems:**

- Copyright violation: unauthorized use of copyrighted data.
- Bias: training data with inherent biases can result in biased models.
- Adversarial attacks:
  - Poisoning: deliberately manipulating training data to compromise the model's integrity.
  - Adversarial examples: adversarial inputs designed to cause failure.

## Challenges

- Data Provenance: Ensuring integrity, authenticity, and security.
- Concerns: Trust in information, misinformation prevention, adversarial attack protection, legal evidence integrity, ethical standards.

#### **Regulatory Perspective**

■ **EU AI Act:** Acknowledges risks of modern ML models and generated content.

#### **Technical Perspective**

Necessity: Robust methods for content protection and tracking.

## Agenda

- Problem formulation
  - A need of content protection
  - Advancement of Foundation Models (FM)
  - Advancement of Digital Watermarking Systems
  - Advancement of Content Tracking Systems
- Security of Foundation models
- Security of Digital Watermarking and Active Image Indexing
- Variability of Security of Various Foundation Models
- Conclusions

#### **Definition of Foundation Models**

**Foundation Models**: Large-scale machine learning models trained on diverse and extensive datasets collected from the internet.

- Data Modalities: Incorporates multiple types of data including images, text, audio, and video.
- Data Provenance: The origins of the training data are not clearly known.
- Applications: Representation learning and generative models.

#### **Development of Foundation Models**

- Developers: Primarily developed by major technology companies with substantial computational resources: Meta (DINO, MAE, VICreg, I-JEPA, Llama), OpenAI (CLIP, ChatGPT, DALL-E, Sora).
- Parameters: These models contain millions to billions of parameters, requiring significant computational power.
- Transparency Issues: Not all companies disclose the specifics of the training data and processes.

#### **Definition of Foundation Models**

## **Architectural Diversity and Training Techniques**

- Model Architectures: Varies widely, including different network structures (CNN, ViT, Mamba) and learning paradigms
- Training Techniques: Utilizes both contrastive and non-contrastive learning methods
- Augmentations: Various image manipulations for better generalization
- Masked image modeling (MIM): to force models to learn powerful representations

## Main concept of represenation learning

#### **Foundation Model Training**

- Given: large amount of training data (both public and proprietary, mainly without labels) and significant compute resources
- Develop an encoder/embedder that can project high-dimensional data into an informative low-dimensional space (self-supervised learning (SSL))
- Utility/versality for tasks should ensure the resulting embeddings are effective and applicable to a variety of downstream tasks

## Main concept of represenation learning

#### **Foundation Model Training**

- Given: large amount of training data (both public and proprietary, mainly without labels) and significant compute resources
- Develop an encoder/embedder that can project high-dimensional data into an informative low-dimensional space (self-supervised learning (SSL))
- Utility/versality for tasks should ensure the resulting embeddings are effective and applicable to a variety of downstream tasks

#### **Model Utilization**

- Base for enhancement: Acts as a foundational platform for integrating specific neural network layers or projectors
- Tailored fine-tuning: Enables customization for particular applications using smaller, specialized datasets

#### **Modes**

- Unimodal: trained on one modality (ex: images)
- Multimodal (CLIP): trained on several modalities (ex: images-text)

## Main concept of represenation learning

(1) Foundation Model Training



Example of joint embedding architecture

Training is done w/o labels

**2** Model Utilization

## Model fine-tuning

Downstream task



Fune-tuning is done with labeled data

(3) Model deployment



#### **Modern FM architectures**



## **Embedding-reconstruction (AE):**

- 1. No mode collapse
- 2. High complexity
- 3. No good loss for pixel space

#### Denoising-AE, MAE

#### **Modern FM architectures**



#### **Embedding-reconstruction (AE):**

- 1. No mode collapse
- 2. High complexity
- 3. No good loss for pixel space

Denoising-AE, MAE

#### Joint embedding:

- 1. Possible mode collapse
- 2. Low complexity
- 3. Some potentially good losses for latent space

SimCLR, BYOL, Swav, MSN, DINO VicReg, BarlowTwins

#### **Modern FM architectures**



#### **Embedding-reconstruction (AE):**

- 1. No mode collapse
- 2. High complexity
- 3. No good loss for pixel space

Denoising-AE, MAE

#### Joint embedding:

- 1. Possible mode collapse
- 2. Low complexity
- Some potentially good losses for latent space

SimCLR, BYOL, Swav, MSN, DINO VicReg, BarlowTwins

#### **Modern FM architectures**



Hybrid versions: CAN, CAE, CMAE, BeIT

#### **Embedding-reconstruction (AE):**

- 1. No mode collapse
- 2. High complexity
- 3. No good loss for pixel space

Denoising-AE, MAE

#### Joint embedding:

- 1. Possible mode collapse
- 2. Low complexity
- 3. Some potentially good losses for latent space

SimCLR, BYOL, Swav, MSN, DINO VicReg, BarlowTwins

#### **Modern FM architectures**



#### **Embedding-reconstruction (AE):**

- 1. No mode collapse
- 2. High complexity
- 3. No good loss for pixel space

Denoising-AE, MAE

#### Joint embedding:

- 1. Possible mode collapse
- 2. Low complexity
- 3. Some potentially good losses for latent space

SimCLR, BYOL, Swav, MSN, DINO VicReg, BarlowTwins

#### Joint embedding-prediction:

- 1. Possible mode collapse
- 2. Relatively low complexity
- 3. Some potentially good losses for latent space

I-JEPA, World Model

#### **Modern FM architectures**



#### **Embedding-reconstruction (AE):**

- 1. No mode collapse
- 2. High complexity
- 3. No good loss for pixel space

Denoising-AE, MAE

#### Joint embedding:

- 1. Possible mode collapse
- 2. Low complexity
- 3. Some potentially good losses for latent space

SimCLR, BYOL, Swav, MSN, DINO VicReg, BarlowTwins

#### Joint embedding-prediction:

- 1. Possible mode collapse
- 2. Relatively low complexity
- 3. Some potentially good losses for latent space

I-JEPA, World Model

## **FM Losses**



#### **FM Losses**



#### **FM Losses**



$$\mathbb{E}_{p_{\psi}(\mathbf{z}'_{+})} \to \frac{1}{K} \sum_{k=1}^{K}$$

#### Regularization / VicREG/

$$\max_{\phi,\psi} I_{\phi,\psi} \left( \mathbf{X}; \mathbf{Z}_{+} \right) + I_{\phi,\psi} \left( \mathbf{X}_{+}; \mathbf{Z} \right)$$

## **Agenda**

- Problem formulation
  - A need of content protection
  - Advancement of Foundation Models (FM)
  - Advancement of Digital Watermarking Systems
  - Advancement of Content Tracking Systems
- Security of Foundation models
- Security of Digital Watermarking and Active Image Indexing
- Variability of Security of Various Foundation Models
- Conclusions

# Advancement of digital watermarking systems

#### $\mathcal{DW}_1$ Hand-crafted architectures



#### WM Enc:

- additive
- multiplicative
- quantization

## Message m:

- zero-bit
- multi-bit

#### Testing/deployment



# Advancement of digital watermarking systems

#### $\mathcal{DW}_2$ AE-based architectures







# Advancement of digital watermarking systems

## $\mathcal{DW}_3$ Adversarial embedding architectures based on foundation models





## **Agenda**

- Problem formulation
  - A need of content protection
  - Advancement of Foundation Models (FM)
  - Advancement of Digital Watermarking Systems
  - Advancement of Content Tracking Systems
- Security of Foundation models
- Security of Digital Watermarking and Active Image Indexing
- Variability of Security of Various Foundation Models
- Conclusions

# Advancement of content tracking systems

#### $\mathcal{CT}_1$ Hand-crafted architectures



# **Advancement of content tracking systems**

#### $\mathcal{CT}_2$ Foundation model-based architectures



# Advancement of content tracking systems

## $\mathcal{CT}_3$ Active image indexing/active fingerprinting



https://arxiv.org/pdf/2210.10620

## **Concluding remark**

#### **Foundation models**

- ML/AI Downstream Tasks 
  Content protection 
  Content tracking
  - Classification
  - **Segmentation**
  - Retrieval
  - **Object detection**
  - **Conditioning for GenAl**

- - Backbone models
    - Embedder

- - Backbone models
    - Feature extraction

What about the security of the foundation model?

## **Agenda**

- Problem formulation
  - A need of content protection
  - Advancement of Foundation Models (FM)
  - Advancement of Digital Watermarking Systems
  - Advancement of Content Tracking Systems
- Security of Foundation models
- Security of Digital Watermarking Systems
- Variability of Security of Various Foundation Models
- Conclusions

# **Security of Foundation Models (task agnostic)**

The rest of the slides will come soon...

Thank you!