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AI/ML model in a black box

• Black box  = access to an unknown model
• MLaaS

• Through an API
• ML on Chips

• Model embedded in IC

• 2 types of AI/ML
• Decision making

• Generative

model ? y = giant pandax = 

‘Tahiti mountains, in the style of Gauguin’ model ?



4 applications

Decision making AI (= classifier)
• Adversarial example

• Point of View: Attacker
• “Know thy enemy”, Sun Tzu
• Identify first model/family before attacking

• Proof of ownership
• Point of view: Defender, whose model has been stolen
• Prove that the black box is the stolen model

Generative AI
• Transparency

• “AI shall NOT usurp human”
• Prove that the content is AI-generated 

• Traceability
• Model distributed under licence terms
• Identify which user has generated that content 

model ? giant pandax = 
‘Tahiti mountains,
in the style of 
Gauguin’

model ?



2 approaches

• Forensics
• Passive approach = vanilla model
• Model already learned & deployed in the black box

• Watermarking
• Active approach = specific model
• Model jointly trained to

• Learn the primary task (classification / generation)
• Learn the identification/attribution task  



Outlines

Forensics Watermarking

Decision making Part 1 Part 2

Generative Part 3 Part 4



Decision-making AI + Forensics = fingerprinting

“FBI: Fingerprinting models with Benign Inputs”, IEEE Trans. on I.F.S.
T. Maho, T. Furon, E. Le Merrer, 2023

• Features of the fingerprint
• Discriminative Different models have different fingerprints
• Robust A model and its variation have similar fingerprints
• Insightful Distance between fingerprints reveals model similarity
• Stealth Easily obtained without raising suspicion (not collaborative)

• Similar to biometry/browser fingerprinting in cybersecurity

DNN ? y = giant pandax = 



Fingerprinting
• Fingerprint = outputs for some selected benign inputs

• Inputs not-to-hard and not-to-easy to be classified

• Distance
• Statistical analysis: whether they make mistakes for the same inputs, in the same way

DNN A

DNN B

𝑦!𝑦"

𝑦#
𝑦$…

𝑧! 𝑧"

𝑧#
𝑧$…

𝑑𝑖𝑠𝑡 𝐴, 𝐵 = 1 −
.𝐼(𝑌; 𝑍)
5𝐻(𝑌, 𝑍)

0 ≤ 𝑑𝑖𝑠𝑡 𝐴, 𝐵 ≤ 1

known as the Rajski distance in Information Theory



Post-processing

• Empirical joint probabilities matrix
• Matrix !𝑃 is 𝑐×𝑐
• Reliable estimation if 𝐿 ≫ 𝑐9

• Trick: surjection
• If top-𝑘 classes are observed:  𝑌 = (𝑌:, … , 𝑌;) 𝑍 = (𝑍:, … , 𝑍;)

𝑧̃ = 1𝑙, if 𝑍< = ground truth
0, otherwise

• Matrix !𝑃 is (𝑘 + 1)×(𝑘 + 1)      

𝒀 = 𝟏 … 𝒀 = 𝒄
𝒁 = 𝟏 !𝑃(𝑍 = 1, 𝑌 = 1) … !𝑃(𝑍 = 1, 𝑌 = 𝑐)

… … …

𝒁 = 𝒄 !𝑃(𝑍 = 𝑐, 𝑌 = 1) … !𝑃(𝑍 = 𝑐, 𝑌 = 𝑐)

A𝒀 = 𝟎 … A𝒀 = 𝒌
A𝒁 = 𝟎 !𝑃( +𝑍 = 0, +𝑌 = 0) … !𝑃( +𝑍 = 0, +𝑌 = 𝑘)

… … …
A𝒁 = 𝒌 !𝑃( +𝑍 = 𝑘, +𝑌 = 0) … !𝑃( +𝑍 = 𝑘, +𝑌 = 𝑘)



Experimental resultls

• Setup: 1081 models
• ImageNet classification problem

• 35 popular vanilla models   (accuracy >70%)
• Convolutional models
• Visual transformers

• 10 types of variation
• Modification of the model: pruning, quantization, fine-tuning, …
• Modification of the inputs: randomized smoothing, JPEG, ...
• Several parameters for each variation
• No more than 15% loss of accuracy



Experimental results - Histogram
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(a) L = 20 Images
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(c) L = 1000 Images

Fig. 5: Histogram of the distance DL(m1,m2) when (m1,m2) 2 F
2(m) (orange), (m1,m2) 2 F

2(m, ) (green), or m1 and
m2 are variants of different vanilla models (red). Inputs randomly sampled in X (top) or in X

0 -Entropy Sect. IV-B2- (bottom).
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Fig. 6: True Positive Rate for (D,F ,A ( B, k) function of
the number of queries randomly selected in 30/70, FPR = 5%,
best delegate options for F(m) (dash) and F(m, ) (plain).

the number of queries is enough, the top-3 takes the lead. They
quickly get very good results close to 100%, simultaneously
as top-5.

To summarize, the TPR reaches 95% for 150 queries under
top-1, 110 under top-3, and 140 for top-5.

3) Identification (I,F ,A ( B, k): All conclusions obtained
in the previous section are kept. Alice now has for delegate the
vanilla model m for F(m) and the Median model for F(m, ).
Images are sampled with Entropy as defined in Sect. IV-B2.

TABLE V: True Positive Rate for (D,F ,A ( B, k) with
random queries selected with 30/70, FPR = 5%.

Number of queries L = 20 L = 50 L = 100 L = 500

F(m)
top-1 79.7 86.9 92.8 99.4
top-3 77.3 88.0 94.2 99.3
top-5 76.8 87.3 93.2 99.3

F(m, )
top-1 83.1 91.5 96.3 99.7
top-3 84.3 94.1 97.7 99.7
top-5 83.6 94.0 97.6 99.6

a) Experimental Protocol: We divide the identification
task into three steps, each of them being prone to errors.

In the first step, Alice decides whether to abstain or proceed
with identification. In the negative case where b 2 F(m0) but
m0

/2 A, the correct answer is to abstain and to consider the
null hypothesis H0. If b belongs to F(m) and m 2 A, the
correct answer is to move to the next step of identification.
We set the probability of error in the negative cases to 5%
by controlling the threshold ⌧ . Alice abstains if all distances
are above the threshold. For this purpose, A consists of 30
models, while the remaining 5 models are used to generate
the negative cases. Alice computes the distances between b
and the 30 vanilla models in A. This process is repeated 20
times, with a random selection of 5 excluded models from P .

Once Alice decides that the black box is identifiable, the
second step is to disclose the family F(mi). She decides for
the hypothesis Hi minimizing the distance. When multiple
models achieve this minimum distance, Alice is unable to
make a decision and chooses to abstain. This conservative
choice is more likely to occur when few images are submitted.

Finally, Alice identifies the variation, knowing she has made
a correct identification of the global family F(mi). In this case,
Alice has to identify the correct variation among 6 families
{F(m, j)}j=1:6: randomized smoothing, pruning (filter, all,
last), JPEG, posterize (See App. A).Alice thus computes 6
distances based on their delegates and identifies the family
i
? = argminj DL(b,F(m, j)). No thresholding is needed

here. For each family, 20 variants with random parameters
and complying with (1) are created. This leads to 700 new
models tested in the black-box, different from the 1,081
models considered so far.

b) Identifying F(m): Alice almost surely identifies the
family F(m) of the black-box as shown in Fig. 7 and Tab. VI.
She reaches her maximum success rate at around 300 queries.
After 200 queries, no incorrect identification is made but 10%
of abstention remains. This is due to the thresholding which

A and B = different models

A and B = different variations of the same model

A and B = same variation of the same model



Experimental results – 2D t-SNE

Analysis
• Compute all pair distances (L=200 images)
• t-SNE 2D representation

1 point = 1 model
• Cluster = 1 vanilla + its variations



Experimental results – Identification rate

• ~ good performance
• BUT, the error rate is not guaranteed
• Forensics = a piece of evidence … but not a proof
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Fig. 7: Probability distribution for (I,F(m),A ( B, 1) vs.
number L of queries. Threshold set to have a maximum 5%
errors in negative cases.
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Fig. 8: Correct Identification Rate for F(m, ) as a function
of the number of queries. One (plain) or two (dashed) delegates
per family.

prevents Alice from misclassification in the negative case. If
no thresholding is done, the success rate reaches 94.7% within
100 queries and 99.1% at 500.

The number of queries is higher than for detection. For
equivalent performance, 4 times more queries are necessary for
identification than for detection. Nevertheless, identification
proceeded by sequential detection would take on average 3.000
queries (24 times more w.r.t. detection) as foreseen by (9).

c) Identifying F(m, ): With a single delegate, Table VI
and Figure 8 show a rather difficult identification. Variants
far from the vanilla model are correctly identified. The main
difficulty comes from the variations that slightly modify the
model. These variants are close to m, which is the center of
the cluster F(m) (see Fig. 1), therefore it is hard to distinguish
them. The compound (22) with the median and the close
delegates yields a boost if L is large enough.

d) Top-k Observations: The best results are obtained for
k = 1 in Tab. VI on every task, like for detection. For the
family F(m), the information gained by top-k needs too many
queries to catch up with the top-1. For family F(m, ), the
difference is smaller. Indeed, top-k with k  3 gives slightly
better results from ⇡ 1, 000 queries and above.

V. STATE-OF-THE-ART BENCHMARK

A. Previous Works
Since the work of IP-Guard [2], all the fingerprinting

papers leverage adversarial examples. They start with a small
collection of benign inputs (except [23] starting from random
noise images) and apply a white-box attack like CW [24].
It forges adversarial examples that lie close to the decision
boundaries, which are the signatures of a model.

Two trends are connected to two applications. The first
one deals with the integrity of the model. In this scenario,
Alice makes sure that Bob placed her model in the black-box
without any alteration. The goal is to sense a fragile fingerprint
such that any modification of the vanilla model is detectable
because it changes the fingerprint. In that light, methods in [8],
[25] create sensitive examples which are triggered only by
modifications of the vanilla model.

The second application is robust fingerprint as considered
so far in this paper. The followers of IP-Guard [2] forge
adversarial examples which are more robust in the sense that
they remain adversarial for any variation of the model while
being more specific to the vanilla model. Paper [3] proposes to
use the universal adversarial perturbations of the vanilla model.
Paper [26] introduces the concept of conferrable examples, i.e.
adversarial examples which only transfer to the variations of
the targeted model. AFA [5] activates dropout as a cheap surro-
gate of variants when forging adversarial examples. TAFA [4]
extends this idea to other machine learning primitives.

Our take in this article is that using benign images is suffi-
cient, and we addressed the fingerprinting problem without the
need to rely on adversarial examples or any other technique to
alter images to get them nearby the boundaries. Indeed, craft-
ing adversarial examples is rather simple but forging them with
extra specificities (fragile or robust to variation) is complex. It
happens that all above-mentioned papers consider small input
dimensions like MNIST or CIFAR (32 ⇥ 32 pixel images);
none of them use ImageNet (224⇥ 224) except IP-Guard [2].
Also, no paper considers that the inputs can be reformed by a
defense (in order to remove an adversarial perturbation before
being classified) or detected as adversarial [27].

B. Fragile Fingerprinting
The application considered in [8] imagines that Alice wants

to detect whether the black-box is exactly m and not a variant.
This corresponds to our scenario (D,F(m, {✓}),A = B, 1)
where ✓ is the identity variation, and A = F(m).

TABLE VI: Correct Identification Rate for (I,F ,A ( B, k)
with random queries selected with Entropy.

Number of queries L = 50 L = 100 L = 500

F(m)
delegate = {close}

top-1 67.1 80.0 98.6

top-3 49.1 57.8 85.3
top-5 48.4 55.7 80.4

F(m, )
delegate = {median}

top-1 65.8 68.3 74.1
top-3 58.2 64.5 71.4
top-5 52.7 57.2 69.2

F(m, )
delegate = {close, median}

top-1 73.1 77.2 83.6

top-3 61.8 70.0 80.2
top-5 60.4 66.3 78.5

B = black box
A = one of the 35 vanilla models

Identification
if min

%
𝑑𝑖𝑠𝑡 𝐴, 𝐵 < 𝑑&

.𝐴 = argmin
%
𝑑𝑖𝑠𝑡 𝐴, 𝐵

else
 .𝐴 = undecided 



Application to Adversarial Examples

DNN ? y = ostrich

target model = black-box

DNN A

source model = white-box

DNN B

DNN Z

…

white-box attack

…
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Abstract

The transferability of adversarial examples is a key issue

in the security of deep neural networks. The possibility of

an adversarial example crafted for a source model fooling

another targeted model makes the threat of adversarial at-

tacks more realistic. Measuring transferability is a crucial

problem, but the Attack Success Rate alone does not provide

a sound evaluation. This paper proposes a new methodol-

ogy for evaluating transferability by putting distortion in a

central position. This new tool shows that transferable at-

tacks may perform far worse than a black box attack if the

attacker randomly picks the source model. To address this

issue, we propose a new selection mechanism, called FiT,

which aims at choosing the best source model with only a

few preliminary queries to the target. Our experimental re-

sults show that FiT is highly effective at selecting the best

source model for multiple scenarios such as single-model

attacks, ensemble-model attacks and multiple attacks
1
.

1. Introduction
Transferability is one of the most intriguing properties of

adversarial examples. A white box attack crafting adversar-
ial examples for an open-source model is likely to fool other
models too [1, 14, 20, 25, 34]. This makes the threat of ad-
versarial examples more realistic. In practice, the model tar-
geted is usually unknown but accessible as a black box. This
prevents directly applying any white box gradient-based at-
tack [10, 16, 19, 35]. Black box attacks do exist but they
require some thousands of queries to find an adversarial ex-
ample of low distortion [4, 11, 17, 24]. Transferable attacks
require no or few queries to fine-tune an adversarial exam-
ple thanks to the help of a publicly available model similar
enough to the target.

Transferability is usually measured by the Attack Suc-

*Thanks to Rennes Métropole for its funding for international mobility.
†Thanks to ANR and AID french agencies for funding Chaire SAIDA.
1Code available at https://github.com/t-maho/
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Figure 1: Evaluation of transferability by comparing the
Attack Success Rate vs. distortion trade-off of a white
box, transferable, and black box attacks against model
CoatLitesmall (See Sect. 4.1 for details). The blue area
is the range of trade-off operated by a transferable attack
with random source models. A transferable attack may be
worse than a black box attack without a good source selec-
tion (like FiT).

cess Rate (ASR), i.e., the probability that the adversarial
example crafted for the source model also deludes the tar-
get model. We argue that this measure leads to an unfair
evaluation of transferability. In the context of adversarial
examples, it is not just a matter of discovering data that is
not well classified, but rather identifying the perturbation
that can fool a classifier with minimal distortion. This prin-
ciple should also apply to transferable attacks.

For illustration purposes, let us consider two models, one
is robust in the sense that the necessary amount of adversar-
ial perturbation is large, whereas the other model is weak.
If the attacker uses the robust model as the source to attack
the weak target network, the ASR of the transferable attack
will certainly be big. It does not mean that this is the right
choice. The ASR is high because the robust source model
needs large perturbation to be deluded, which will fool any
weaker model. The ASR alone does not reflect the over-
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Decision-making AI + active = watermarking

“RoSe: A RObust and SEcure Black-Box DNN Watermarking”, IEEE WIFS,
K. Kallas, T. Furon, 2022

• Features of the watermark
• No loss of utility: Similar accuracy with/without watermark
• Robust: Watermark detected even if model modification
• Stealth: Detection easily obtained without raising suspicion (not collaborative)
• Security: Convincing proof of ownership

• Similar to multimedia content watermarking

DNN ? y = giant pandax = 



Watermarking

• Watermark embedding at training time
• Make the model memorize silly (input/output) pairs 𝑥K, 𝑦K KL:..N
• Tiny fraction of the training set does not spoil accuracy/utility

• Verification at test time
• The Verifier queries inputs 𝑥K KL:..N and sees if model predicts 𝑦K KL:..N

• The value of the proof
• Rarity:  no other model would make such errors
• Causality: impossible to exhibit such pairs a posteriori
• Secrecy:  the owner is the only one to know the pairs

…
𝑦! =ostrich

𝑥! =

𝑦' = cat

𝑥' =



Watermarking

• Watermark embedding at training time
• Make the model memorize silly (input/output) pairs 𝑥K, 𝑦K KL:..N
• Tiny fraction of the training set does not spoil accuracy/utility

• Verification at test time
• The Verifier queries inputs 𝑥K KL:..N and sees if model predicts 𝑦K KL:..N

• The value of the proof
• Rarity:  no other model would make such errors
• Causality: impossible to exhibit such pairs a posteriori
• Secrecy:  the owner is the only one to know the pairs

How can you be so sure?

What about adversarial example?

What is the size of th
is secret? in bits?

…
𝑦! =ostrich

𝑥! =

𝑦' = cat

𝑥' =



Adversarial examples

+ 𝜖 ∗

+ 𝜖 ∗

+ 𝜖 ∗

=

=

=

ostrich

« Intriguing properties of neural networks », Szegedy, Goodfellow et al., 2014 

𝛻𝒙𝑓(𝒙) , ostrich; 𝜃)𝒙) + 𝜖 ∗



Proposal - I
• At training time
• Owner:

• Generate a key 𝑠𝑘, select inputs from the traning set 𝑥! !"#..%
• Generate labels pseudo-randomly: 𝑦! !"#..% = 𝑃𝑅𝑁𝐺[𝐻𝑎𝑠ℎ 𝑥! !"#..% ; 𝑠𝑘 ]

• At verification time
• The Verifier queries inputs 𝑥K KL:..N , computes 𝑦K KL:..N and

 𝑚 = 𝑥K| 𝑦K = 𝐷𝑁𝑁(𝑥K)
• Rationale: If one picks a random key 𝑆𝐾

• Assumption: 𝑌!~𝒰({1, … , 𝑐}) i.i.d.
•    [𝑌! = 𝐷𝑁𝑁(𝑥!)] ~ℬ ⁄# & and 𝑀~ ℬ 𝑛, ⁄# &
• Define Rarity  (in bits) as

𝑅 ≝ − log'ℙ 𝑀 ≥ 𝑚  = − log' 𝐼 ⁄! "
(𝑚, 𝑛 + 1 −𝑚)



Proposal -II

• What if the claiming owner is an Usurper?
• He forges 𝑛 adversarial examples with random targeted class
• If not matching, he modifies some LSB in the inputs

• This changes 𝑃𝑅𝑁𝐺[𝐻𝑎𝑠ℎ J𝑥! !"#..% ; 𝑠𝑘 ] but not   𝐷𝑁𝑁 J𝑥! !

• Repeat until obtaining enough matches

• The amount of work = complexity of a successful attack
𝑊 = 𝑊\ + 𝑅 2] − 1

𝜅^ + 𝜅_
log9 𝑐

Super-exponential in 𝑅Work for forging A.E. Costs for hasing+querying



Experimental results - I

dataset 𝒄 𝒏 Acc. Ori (%) ∆ Acc. Wat ∆ Acc. Att Recovery (%) Rarity (bits)

MNIST 10 48 99.0 -0.2 -0.3 95.0 140

CIFAR10 10 40 83.8 -0.7 -0.8 98.0 125

TinyImageNet 200 80 57.2 -0.4 -0.5 100 611

CIFAR100 100 400 66.1 -1.1 -24.5 16.0 180

GTSRB 42 3000 94.5 -3.8 -9.0 10.9 397

Attacks: pruning, fine-tuning, quantization (float16, int8, dyn.)…

The recovery rate (robustness of the memorization) depends on
• Difficulty of the classification task (input diversity, number of classes)
• Capacity of the DNN (over-parametrized)
• The strength of the attack (a loss of utility for the attacker)

• Larger 𝒏 compensates a lower recovery rate (a loss of utility for the defender)
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Motivations… if need be

• Indistinguishable
• https:/realoraigame.com/game.html
• https://www.whichfaceisreal.com/
• "AI-synthesized faces are indistinguishable from real faces and more trustworthy”,

S. Nightingale and H. Farid., PNAS 2022 
• Malicious use of Gen AI

• Scams
“We are hurtling toward a glitchy, spammy, scammy, AI-powered internet”

Melissa Heikkilä, MIT Technology Review, 2023
“Junk websites filled with AI-generated text are pulling in money from programmatic ads”

Tate Ryan-Mosley, MIT Technology Review, 2023

• Disinformation (Cheaper, Faster, Better)
“AI model GPT-3 (dis)informs us better than humans”

G. Spitale, N. Biller, and F. Germani, Science Advances, 2023

https://realoraigame.com/game.html
https://www.whichfaceisreal.com/




Forensics traces 2

Fig. 1: Top: examples of synthetic images, generated using (from left to right) Latent Diffusion, Stable Diffusion, Midjourney v5,
DALL·E Mini, DALL·E 2, DALL·E 3. The prompt used for their generation is the following: a photo of the Rome Colosseum
with a UFO over it, detailed, 8k. Bottom: Average Power Spectra of the artificial fingerprints for each of such model. Forensic
artifacts are clearly visible as spectral peaks in the Fourier domain, stronger or weaker based on the specific model. We can
observe that the first three images share very similar artifacts while the fingerprints of the three releases of DALL-E differ greatly
from one another, testifying to very different generative architectures[4].

Pre-Training) [30] as the underlying language model, and
produce high-quality samples in a controllable manner. A
further improvement has been made by GigaGAN, the first
GAN-based method trained on billions of real-world images,
which is capable of synthesizing high-resolution images very
quickly, also supporting latent interpolation and stylization.

B. Diffusion Models
At the core of diffusion models are two interconnected

stochastic processes. A forward process transforms natural
images into random noise by adding Gaussian noise in small
steps. The samples generated in a single step of the forward
process are then used to train a neural network that inverts that
step, removing some noise from the input sample. A chain of
such networks performs the backward process, gradually con-
verting input Gaussian noise into synthetic images. The quality
of images generated by diffusion models is comparable to that
of GANs and better than that of other approaches.[16], [17]
Furthermore, training is easier and more stable than GANs,
without mode collapse, although more time-consuming. More
importantly, with their flexibility, DMs provide ideal support
for text-image synthesis, enabling the generation of complex
images based on diverse and arbitrary text descriptions. All
this has revolutionized the way of tackling complex gener-
ative artificial intelligence tasks, and lead to many different
architectures for text-image synthesis.

Most of these models rely on U-Net and its variations as a
backbone, like GLIDE and DALL-E 2, that use a text encoder
to condition generation on natural language descriptions based
on CLIP. The more recent Ediff-I adopts multiple U-Net
models specialized for different synthesis stages. To reduce
computational costs, Latent DM combines a diffusion model

with a variational autoencoder: the former operates in a low-
dimensional space to generate the latent vector needed by the
latter. A noteworthy model of this class is Stable Diffusion,
which is part of an open-source project and is trained on the
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BRIEFING ROOM STATEMENTS AND RELEASES

Voluntary commitments – underscoring safety, security, and trust – mark a
critical step toward developing responsible AI

Biden-Harris Administration will continue to take decisive action by developing
an Executive Order and pursuing bipartisan legislation to keep Americans safe

Since taking office, President Biden, Vice President Harris, and the entire
Biden-Harris Administration have moved with urgency to seize the
tremendous promise and manage the risks posed by Artificial Intelligence
(AI) and to protect Americans’ rights and safety. As part of this commitment,
President Biden is convening seven leading AI companies at the White House
today – Amazon, Anthropic, Google, Inflection, Meta, Microsoft, and OpenAI
– to announce that the Biden-Harris Administration has secured voluntary
commitments from these companies to help move toward safe, secure, and
transparent development of AI technology.   

Companies that are developing these emerging technologies have a
responsibility to ensure their products are safe. To make the most of AI’s
potential, the Biden-Harris Administration is encouraging this industry to
uphold the highest standards to ensure that innovation doesn’t come at the
expense of Americans’ rights and safety.

These commitments, which the companies have chosen to undertake
immediately, underscore three principles that must be fundamental to the
future of AI – safety, security, and trust – and mark a critical step toward
developing responsible AI. As the pace of innovation continues to accelerate,
the Biden-Harris Administration will continue to remind these companies of
their responsibilities and take decisive action to keep Americans safe.

There is much more work underway. The Biden-Harris Administration is
currently developing an executive order and will pursue bipartisan legislation
to help America lead the way in responsible innovation.

Today, these seven leading AI companies are committing to:

Ensuring Products are Safe Before Introducing Them to the Public

The companies commit to internal and external security testing of their
AI systems before their release. This testing, which will be carried out in
part by independent experts, guards against some of the most significant
sources of AI risks, such as biosecurity and cybersecurity, as well as its
broader societal effects.

The companies commit to sharing information across the industry and
with governments, civil society, and academia on managing AI
risks. This includes best practices for safety, information on attempts to
circumvent safeguards, and technical collaboration.

Building Systems that Put Security First

The companies commit to investing in cybersecurity and insider threat
safeguards to protect proprietary and unreleased model weights. These
model weights are the most essential part of an AI system, and the
companies agree that it is vital that the model weights be released only
when intended and when security risks are considered.

The companies commit to facilitating third-party discovery and
reporting of vulnerabilities in their AI systems. Some issues may persist
even after an AI system is released and a robust reporting mechanism
enables them to be found and fixed quickly.

Earning the Public’s Trust

The companies commit to developing robust technical mechanisms to
ensure that users know when content is AI generated, such as a
watermarking system. This action enables creativity with AI to flourish
but reduces the dangers of fraud and deception.

The companies commit to publicly reporting their AI systems’
capabilities, limitations, and areas of appropriate and inappropriate
use. This report will cover both security risks and societal risks, such as the
effects on fairness and bias.

The companies commit to prioritizing research on the societal risks
that AI systems can pose, including on avoiding harmful bias and
discrimination, and protecting privacy. The track record of AI shows the
insidiousness and prevalence of these dangers, and the companies commit
to rolling out AI that mitigates them.   

The companies commit to develop and deploy advanced AI systems to
help address society’s greatest challenges. From cancer prevention to
mitigating climate change to so much in between, AI—if properly managed
—can contribute enormously to the prosperity, equality, and security of all.

As we advance this agenda at home, the Administration will work with allies
and partners to establish a strong international framework to govern the
development and use of AI. It has already consulted on the voluntary
commitments with Australia, Brazil, Canada, Chile, France, Germany, India,
Israel, Italy, Japan, Kenya, Mexico, the Netherlands, New Zealand, Nigeria,
the Philippines, Singapore, South Korea, the UAE, and the UK. The United
States seeks to ensure that these commitments support and complement
Japan’s leadership of the G-7 Hiroshima Process—as a critical forum for
developing shared principles for the governance of AI—as well as the United
Kingdom’s leadership in hosting a Summit on AI Safety, and India’s leadership
as Chair of the Global Partnership on AI. We also are discussing AI with the
UN and Member States in various UN fora.

Today’s announcement is part of a broader commitment by the Biden-Harris
Administration to ensure AI is developed safely and responsibly, and to
protect Americans from harm and discrimination.

Earlier this month, Vice President Harris 
 to discuss risks related to AI and reaffirm

the Biden-Harris Administration’s commitment to protecting the American
public from harm and discrimination.
 

Last month, President Biden  in
San Francisco as part of his commitment to seizing the opportunities and
managing the risks posed by AI, building on the President’s ongoing
engagement with leading AI experts.
 

In May, the President and Vice President convened the CEOs of four
American companies at the forefront of AI innovation—Google, Anthropic,
Microsoft, and OpenAI—to underscore their responsibility and emphasize
the importance of driving responsible, trustworthy, and ethical innovation
with safeguards that mitigate risks and potential harms to individuals and
our society. At the companies’ request, the White House hosted a
subsequent meeting focused on cybersecurity threats and best practices.
 

The Biden-Harris Administration published a landmark Blueprint for an
AI Bill of Rights to safeguard Americans’ rights and safety, and U.S.
government agencies have ramped up their efforts to protect Americans
from the risks posed by AI, including through preventing algorithmic
bias in home valuation and 

 to protect people from unlawful bias, discrimination, and other harmful
outcomes.
 

President Biden signed an Executive Order that directs federal agencies to
root out bias in the design and use of new technologies, including AI, and to
protect the public from algorithmic discrimination.
 

Earlier this year, the National Science Foundation announced a $140
million investment to establish seven new National AI Research Institutes,
bringing the total to 25 institutions across the country.
 

The Biden-Harris Administration has also released a National AI R&D
Strategic Plan to advance responsible AI.
 

The Office of Management and Budget will soon release draft policy
guidance for federal agencies to ensure the development, procurement, and
use of AI systems is centered around safeguarding the American people’s
rights and safety.
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Biden-Harris Administration have moved with urgency to seize the
tremendous promise and manage the risks posed by Artificial Intelligence
(AI) and to protect Americans’ rights and safety. As part of this commitment,
President Biden is convening seven leading AI companies at the White House
today – Amazon, Anthropic, Google, Inflection, Meta, Microsoft, and OpenAI
– to announce that the Biden-Harris Administration has secured voluntary
commitments from these companies to help move toward safe, secure, and
transparent development of AI technology.   

Companies that are developing these emerging technologies have a
responsibility to ensure their products are safe. To make the most of AI’s
potential, the Biden-Harris Administration is encouraging this industry to
uphold the highest standards to ensure that innovation doesn’t come at the
expense of Americans’ rights and safety.

These commitments, which the companies have chosen to undertake
immediately, underscore three principles that must be fundamental to the
future of AI – safety, security, and trust – and mark a critical step toward
developing responsible AI. As the pace of innovation continues to accelerate,
the Biden-Harris Administration will continue to remind these companies of
their responsibilities and take decisive action to keep Americans safe.

There is much more work underway. The Biden-Harris Administration is
currently developing an executive order and will pursue bipartisan legislation
to help America lead the way in responsible innovation.

Today, these seven leading AI companies are committing to:

Ensuring Products are Safe Before Introducing Them to the Public

The companies commit to internal and external security testing of their
AI systems before their release. This testing, which will be carried out in
part by independent experts, guards against some of the most significant
sources of AI risks, such as biosecurity and cybersecurity, as well as its
broader societal effects.

The companies commit to sharing information across the industry and
with governments, civil society, and academia on managing AI
risks. This includes best practices for safety, information on attempts to
circumvent safeguards, and technical collaboration.

Building Systems that Put Security First

The companies commit to investing in cybersecurity and insider threat
safeguards to protect proprietary and unreleased model weights. These
model weights are the most essential part of an AI system, and the
companies agree that it is vital that the model weights be released only
when intended and when security risks are considered.

The companies commit to facilitating third-party discovery and
reporting of vulnerabilities in their AI systems. Some issues may persist
even after an AI system is released and a robust reporting mechanism
enables them to be found and fixed quickly.

Earning the Public’s Trust

The companies commit to developing robust technical mechanisms to
ensure that users know when content is AI generated, such as a
watermarking system. This action enables creativity with AI to flourish
but reduces the dangers of fraud and deception.

The companies commit to publicly reporting their AI systems’
capabilities, limitations, and areas of appropriate and inappropriate
use. This report will cover both security risks and societal risks, such as the
effects on fairness and bias.

The companies commit to prioritizing research on the societal risks
that AI systems can pose, including on avoiding harmful bias and
discrimination, and protecting privacy. The track record of AI shows the
insidiousness and prevalence of these dangers, and the companies commit
to rolling out AI that mitigates them.   

The companies commit to develop and deploy advanced AI systems to
help address society’s greatest challenges. From cancer prevention to
mitigating climate change to so much in between, AI—if properly managed
—can contribute enormously to the prosperity, equality, and security of all.

As we advance this agenda at home, the Administration will work with allies
and partners to establish a strong international framework to govern the
development and use of AI. It has already consulted on the voluntary
commitments with Australia, Brazil, Canada, Chile, France, Germany, India,
Israel, Italy, Japan, Kenya, Mexico, the Netherlands, New Zealand, Nigeria,
the Philippines, Singapore, South Korea, the UAE, and the UK. The United
States seeks to ensure that these commitments support and complement
Japan’s leadership of the G-7 Hiroshima Process—as a critical forum for
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Kingdom’s leadership in hosting a Summit on AI Safety, and India’s leadership
as Chair of the Global Partnership on AI. We also are discussing AI with the
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critical step toward developing responsible AI

Biden-Harris Administration will continue to take decisive action by developing
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Since taking office, President Biden, Vice President Harris, and the entire
Biden-Harris Administration have moved with urgency to seize the
tremendous promise and manage the risks posed by Artificial Intelligence
(AI) and to protect Americans’ rights and safety. As part of this commitment,
President Biden is convening seven leading AI companies at the White House
today – Amazon, Anthropic, Google, Inflection, Meta, Microsoft, and OpenAI
– to announce that the Biden-Harris Administration has secured voluntary
commitments from these companies to help move toward safe, secure, and
transparent development of AI technology.   

Companies that are developing these emerging technologies have a
responsibility to ensure their products are safe. To make the most of AI’s
potential, the Biden-Harris Administration is encouraging this industry to
uphold the highest standards to ensure that innovation doesn’t come at the
expense of Americans’ rights and safety.

These commitments, which the companies have chosen to undertake
immediately, underscore three principles that must be fundamental to the
future of AI – safety, security, and trust – and mark a critical step toward
developing responsible AI. As the pace of innovation continues to accelerate,
the Biden-Harris Administration will continue to remind these companies of
their responsibilities and take decisive action to keep Americans safe.

There is much more work underway. The Biden-Harris Administration is
currently developing an executive order and will pursue bipartisan legislation
to help America lead the way in responsible innovation.

Today, these seven leading AI companies are committing to:

Ensuring Products are Safe Before Introducing Them to the Public

The companies commit to internal and external security testing of their
AI systems before their release. This testing, which will be carried out in
part by independent experts, guards against some of the most significant
sources of AI risks, such as biosecurity and cybersecurity, as well as its
broader societal effects.

The companies commit to sharing information across the industry and
with governments, civil society, and academia on managing AI
risks. This includes best practices for safety, information on attempts to
circumvent safeguards, and technical collaboration.

Building Systems that Put Security First

The companies commit to investing in cybersecurity and insider threat
safeguards to protect proprietary and unreleased model weights. These
model weights are the most essential part of an AI system, and the
companies agree that it is vital that the model weights be released only
when intended and when security risks are considered.

The companies commit to facilitating third-party discovery and
reporting of vulnerabilities in their AI systems. Some issues may persist
even after an AI system is released and a robust reporting mechanism
enables them to be found and fixed quickly.

Earning the Public’s Trust

The companies commit to developing robust technical mechanisms to
ensure that users know when content is AI generated, such as a
watermarking system. This action enables creativity with AI to flourish
but reduces the dangers of fraud and deception.

The companies commit to publicly reporting their AI systems’
capabilities, limitations, and areas of appropriate and inappropriate
use. This report will cover both security risks and societal risks, such as the
effects on fairness and bias.

The companies commit to prioritizing research on the societal risks
that AI systems can pose, including on avoiding harmful bias and
discrimination, and protecting privacy. The track record of AI shows the
insidiousness and prevalence of these dangers, and the companies commit
to rolling out AI that mitigates them.   

The companies commit to develop and deploy advanced AI systems to
help address society’s greatest challenges. From cancer prevention to
mitigating climate change to so much in between, AI—if properly managed
—can contribute enormously to the prosperity, equality, and security of all.

As we advance this agenda at home, the Administration will work with allies
and partners to establish a strong international framework to govern the
development and use of AI. It has already consulted on the voluntary
commitments with Australia, Brazil, Canada, Chile, France, Germany, India,
Israel, Italy, Japan, Kenya, Mexico, the Netherlands, New Zealand, Nigeria,
the Philippines, Singapore, South Korea, the UAE, and the UK. The United
States seeks to ensure that these commitments support and complement
Japan’s leadership of the G-7 Hiroshima Process—as a critical forum for
developing shared principles for the governance of AI—as well as the United
Kingdom’s leadership in hosting a Summit on AI Safety, and India’s leadership
as Chair of the Global Partnership on AI. We also are discussing AI with the
UN and Member States in various UN fora.

Today’s announcement is part of a broader commitment by the Biden-Harris
Administration to ensure AI is developed safely and responsibly, and to
protect Americans from harm and discrimination.

Earlier this month, Vice President Harris 
 to discuss risks related to AI and reaffirm

the Biden-Harris Administration’s commitment to protecting the American
public from harm and discrimination.
 

Last month, President Biden  in
San Francisco as part of his commitment to seizing the opportunities and
managing the risks posed by AI, building on the President’s ongoing
engagement with leading AI experts.
 

In May, the President and Vice President convened the CEOs of four
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with safeguards that mitigate risks and potential harms to individuals and
our society. At the companies’ request, the White House hosted a
subsequent meeting focused on cybersecurity threats and best practices.
 

The Biden-Harris Administration published a landmark Blueprint for an
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government agencies have ramped up their efforts to protect Americans
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outcomes.
 

President Biden signed an Executive Order that directs federal agencies to
root out bias in the design and use of new technologies, including AI, and to
protect the public from algorithmic discrimination.
 

Earlier this year, the National Science Foundation announced a $140
million investment to establish seven new National AI Research Institutes,
bringing the total to 25 institutions across the country.
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Since taking office, President Biden, Vice President Harris, and the entire
Biden-Harris Administration have moved with urgency to seize the
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(AI) and to protect Americans’ rights and safety. As part of this commitment,
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responsibility to ensure their products are safe. To make the most of AI’s
potential, the Biden-Harris Administration is encouraging this industry to
uphold the highest standards to ensure that innovation doesn’t come at the
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developing responsible AI. As the pace of innovation continues to accelerate,
the Biden-Harris Administration will continue to remind these companies of
their responsibilities and take decisive action to keep Americans safe.

There is much more work underway. The Biden-Harris Administration is
currently developing an executive order and will pursue bipartisan legislation
to help America lead the way in responsible innovation.

Today, these seven leading AI companies are committing to:

Ensuring Products are Safe Before Introducing Them to the Public

The companies commit to internal and external security testing of their
AI systems before their release. This testing, which will be carried out in
part by independent experts, guards against some of the most significant
sources of AI risks, such as biosecurity and cybersecurity, as well as its
broader societal effects.
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model weights are the most essential part of an AI system, and the
companies agree that it is vital that the model weights be released only
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Laws

• EU AI Act, Article 50.2
Providers of AI systems […] generating synthetic audio, image, video or text 
content, shall ensure the outputs of the AI system are marked in a machine-
readable format and detectable as artificially generated or manipulated. […] 
Providers shall ensure their technical solutions are effective, interoperable, 
robust, and reliable as far as this is technically feasible.

• California State Legislature, AB-3211
Generative AI system providers must embed imperceptible and indelible 
watermarks in synthetic content, detailing the content’s origins. Watermarks 
must be designed to be maximally indelible and retain information even if the 
content is altered

• White House Executive order, Section 10
• Chinese Interim Measures on Generative AI, Article 12



Watermarking vs. Forensics

• Advantages
• Better detectability/robustness

• Forensics (passive): detection of unintentional statistical traces
• Watermarking (active): deliberate insertion of a secret weak signal

• Theoretical guarantees
• Low false positive rate, and provably low

• Drawbacks
• Degradation of the quality

• Definition?
• Modification of the generation process

• Post-hoc watermarking? Within the generation?



Who are we fighting? 

• Joe Sixpack – “Keep Honest People Honest”
• Generative AI = commercial product
ü Watermarking (law)
ü Forensics (large number of examples for training a classifier)

• Mafia/belligerent nations
• Able to learn their own generative AI
💀 Watermarking
💀 Forensics (too few examples)

• Open-source gen-AI?



Generative AI + Watermarking
2 approaches

1. Generate and then watermark
• Ok for black box AI
• Not secure for open source models

• Ex: Stable Diffusion on Hugging Face

2. Natively generate watermarked content
A. Train the generative model over watermarked contents
B. Fine-tune the generative model so that it learns to “speak” to a watermark decoder

#
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Released model
Open-source

Approche 2B: Stable Signature

: 011001

Image generation

: 011001

Watermark 
decoder

AI generated?
✔ /  ✗

Published Image

Latent 
Generative Model

z

M

Mapper

Latent Generative 
Model

‘Tahiti mountains, in the style of Gauguin’

Mapper fine-tuning 

“The Stable Signature: Rooting Watermarks in Latent Diffusion Models”, ICCV 2023
P. Fernandez, G. Couairon, H. Jégou, M. Douze, T. Furon
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Fine-tuning of the LDM mapper
• Over a hundred of images
• 1 minute on 1 GPU

Approche 2B: Stable Signature

MO

Fixed sequence 
m = 00110

z WM 
decoder

latent

Decoded 
sequence m’

Inv
Mapper MW

Sequence Reconstruction Loss

Image Reconstruction Loss
Watson-VGG
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𝑀(𝑚,𝑚′) = popcount [¬ XOR (𝑚,𝑚′) ]

𝐻) Image is not generated by our model (eg. natural image)
𝑀(𝑚,𝑚′) follows a binomial distribution ~ ℬ 𝑛, ⁄# '

𝐻# Image is generated by our model (AI-generated)
𝑀 𝑚,𝑚* ≈ 𝑛

Test: 𝑀 𝑚,𝑚* ≥ 𝜏 → detection

FPR (False Positive Rate): ℙ 𝑀(𝑚,𝑚′) ≥ 𝜏| 𝐻) = 𝐼 ⁄! #(𝜏, 𝑛 + 1 − 𝜏)

Approche 2B: Stable Signature

Random m’: 10101Decoder

Natural image Generated by our model

m’ : 00110Decoder

Table 5. Watermark robustness on different tasks and image transformations applied before decoding. We report the bit accuracy,
averaged over 10⇥ 1k images generated with 10 different keys. The combined transformation is a combination Crop 50%, Brightness 1.5
and JPEG 80. More detail on the evaluation is available in the supplement A.3.

Task Image transformation

None Crop 0.1 JPEG 50 Resi. 0.7 Bright. 2.0 Cont. 2.0 Sat. 2.0 Sharp. 2.0 Text over. Comb.

Text-to-Image LDM [68] 0.99 0.95 0.88 0.91 0.97 0.98 0.99 0.99 0.99 0.92

Image Edition DiffEdit [13] 0.99 0.95 0.90 0.91 0.98 0.98 0.99 0.99 0.99 0.94

Inpainting - Full Glide [57] 0.99 0.97 0.88 0.90 0.98 0.99 0.99 1.00 0.99 0.93
Inpa - Mask only 0.89 0.76 0.73 0.77 0.84 0.86 0.89 0.91 0.89 0.78

Super-Resolution LDM [68] 0.98 0.93 0.86 0.85 0.96 0.96 0.97 0.98 0.98 0.92

B.2. Additional results on watermarks robustness

In Table 5, we report the same table as in Table 1 that
evaluates the watermark robustness in bit accuracy on dif-
ferent tasks, with additional image transformations. They
are detailed and illustrated in App. A.3. As a reminder, the
watermark is a 48-bit binary key. It is robust to a wide range
transformations, and most often yields above 0.9 bit accu-
racy. The resize and JPEG 50 transformations seems to be
the most challenging ones, and sometimes get bellow 0.9.
Note that the crop location is not important but the visual
content of the crop is, e.g. there is no way to decode the
watermark on crops of blue sky (this is the reason we only
show center crop).

B.3. Additional network level attacks

Tab. 6 reports robustness of the watermarks to differ-
ent quantization and pruning levels for the LDM decoder.
Quantization is performed naively, by rounding the weights
to the closest quantized value in the min-max range of every
weight matrix. Pruning is done using PyTorch [61] pruning
API, with the L1 norm as criterion. We observe that the net-
work generation quality degrades faster than WM robust-
ness. To reduce bit accuracy lower than 98%, quantization
degrades the PSNR <25dB, and pruning <20dB.

Table 6. Bit accuracy after network attacks, observed over 10⇥1k
images generated from text prompts.

Quantization (8-bits) 0.99 Pruning L1 (30%) 0.99
Quantization (4-bits) 0.99 Pruning L1 (60%) 0.95

B.4. Scaling factor at pre-training.

The watermark encoder does not need to be perceptu-
ally good and it is beneficial to degrade image quality dur-
ing pre-training. In the following, ablations are conducted
on a shorter schedule of 50 epochs, on 128 ⇥ 128 im-
ages and 16-bits messages. In Table 7, we train water-
mark encoders/extractors for different scaling factor ↵ (see
Sec. 4.1), and observe that ↵ strongly affects the bit accu-
racy of the method. When it is too high, the LDM needs to
generate low quality images for the same performance be-
cause the distortions seen at pre-training by the extractor are
too strong. When it is too low, they are not strong enough
for the watermarks to be robust: the LDM will learn how
to generate watermarked images, but the extractor won’t be
able to extract them on edited images.

B.5. Are the decoded bits i.i.d. Bernoulli random

variables?

The FPR and the p-value (2) are computed with the as-
sumption that, for vanilla images (not watermarked), the
bits output by the watermark decoder W are independent

Before whitening: After whitening: Bernoulli simulation:

Figure 11. Covariance matrices of the bits output by the watermark decoder W before and
after whitening.

Figure 12. FPR Empirical check.
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Approche 2B: Stable Signature

Message length 𝑛 = 48 bits 

TPR: 1k generated images + attacks

Plot for  𝜏 ∈ [0,n]
Watermark

Forensics+ means passive detection with “On the detection of synthetic images generated with diffusion models”, Corvi et al., 2022

None Brightness 2.0

Crop 10% Combined (crop, bright, JPEG)



Approche 2B: Voice cloning

Speech
Model

Watermark 
Generator

WatermarkedAI-Generated

✔
✗

‘AI generated?’
Published

Speech 
editing

Watermark 
Detector

Proactively watermarked speech generator

“Proactive Detection of Voice Cloning with Localized Watermarking”, ICML 2024
R. San Roman, P. Fernandez, H. Elsahar, A. Défossez, T. Furon



Approche A: LLM watermarking

“Three bricks to consolidate watermarks for LLM”, IEEE WIFS 2023
P. Fernandez, A. Chaffin, K. Tit, V. Chappelier, T. Furon

‘Write an essay about Paul Gauguin’ model ?
Paul Gauguin was a French Post-Impressionist
artist. Unappreciated until after his death,
Gauguin is now recognized for his
experimental use of colour and Synthetist style
that were distinct from Impressionism. 



Approche A: LLM watermarking

LLM

vocabulary

prob.

Sampling
context

(prompt + previous tokens) the next token

vocabulary

prob.

secret key

Sampling the next token
more likely green than red

𝛾 green
(1- 𝛾) red

“A watermark for Large Language Models”, ICML 2023
J. Kirchenbauer, J. Geiping, Y. Wen, J. Katz, I. Miller, T. Goldstein



Approche A: LLM watermarking

Paul Gauguin was a French Post-Impressionist artist. Unappreciated until
after his death, Gauguin is now recognized for his experimental use of 
colour and synthetist style that were distinct from Impressionism.

Number of green tokens: 𝑠
Total number of tokens: 𝑛

H0 : If text not watermarked, then 
𝑆~Β 𝑛, 𝛾

𝑃 𝑆 ≥ 𝜏 = 𝐼+(𝜏 + 1, 𝑛 − 𝜏)

H1 : If generated, then 𝑆 deviates from Β 𝑛, 𝛾 because green tokens are more frequent



Approche A: LLM watermarking

LLM

vocabulary

prob.

Sampling
context

(prompt + previous tokens) the next token

vocabulary

prob.

secret key

Sampling the next token
more likely green than red

𝛾 green
(1- 𝛾) redHash function

𝐻,(𝑥-. , 𝑥-(.-!), … , 𝑥-!)



Approche A: LLM watermarking

• Their False Positive Rates are not sound!!! 

(a) Z-tests (b) Tests of III-B (c) Tests of III-B, rectified with III-C

Fig. 2: Empirical checks of false positive rates for different watermarks and values of the context width h. Results are computed over 10
master keys ⇥ 100k Wikipedia examples of length 256 tokens. We compare three detection tests: (Left) using Z-tests; (Middle) using new
statistical tests presented in III-B; (Right) using the new statistical tests with the rectified scoring strategy of III-C. Theoretical values do not
hold in practice for Z-tests, even for high values of the watermarking context width h, and empirical FPRs do not match theoretical ones.
This is solved by basing detection on grounded statistical tests and analytic p-values, as well as by revising the scoring strategy.

III. RELIABILITY OF THE DETECTION

A. Empirical Validation of FPR with Z-Scores
So far, the FPR was checked on small scale experiments:

around 500 negative samples [18], [19], [21]. This section
conducts large-scale studies to validate the current approaches.

We select 100k texts from multilingual Wikipedia to cover
the distribution of natural text. We tokenize them using
LLaMA’s tokenizer, and cut T = 256 tokens from each text.
We run the detection tests with varying length h for the context
window used when seeding the RNG (Sect. II-D). We repeat
this experiment with 10 different master keys, which makes
1M detection results under H0 for each method and h value.
For the detection of the greenlist watermark, we use � = 0.25.

Fig. 2a compares empirical and theoretical FPRs. The
obvious observation is that the theoretical guarantees do not
hold in practice: the empirical FPRs are much higher than the
theoretical ones. We also observed in practice that distributions
of p-values were not uniform (which should be the case under
H0). Besides, the larger the watermarking context window h,
the closer we get to theoretical guarantees. In pratice, one
would need h >> 8 to get reliable p-values, but this makes
the watermarking method less robust to attacks on generated
text because it hurts synchronization.

B. New Non-Asymptotical Statistical Tests
The Gaussian assumption about the Z-tests breaks down for

short texts. Here are non-asymptotical tests for both methods.
They reduce the gap between empirical and theoretical FPR,
especially for low FPR values as shown in Fig. 2.

1) Kirchenbauer et al. [18]: Under H0, we assume that the
event x

(t)
2 Gk(t) occurs with probability �, and that these

events are i.i.d. Therefore, ST (2) is distributed as a binomial
of parameters T and �. Consider a text under scrutiny whose
score equals s. The p-value is defined as the probability of
obtaining a score higher than s under H0:

p-value(s) = P(ST > s|H0) = I�(s, T � s+ 1), (6)

because S ⇠ B(T, �) whose c.d.f. is expressed by Ix(a, b) the
regularized incomplete Beta function.

2) Aaronson et al. [17]: Under H0, we assume that the
text under scrutiny and the secret vector are independent, so
that rx(t)

i.i.d.
⇠ U(0, 1). Therefore, ST (3) follows a �(T, 1)

distribution. The p-value associated to a score s reads:

p-value(s) = P(ST > s|H0) =
�(T, s)

�(T )
, (7)

where � is the upper incomplete gamma function. Under H1,
the score is expected to be higher as proven in App. A, so the
p-value is likely to be small.

C. Rectifying the Detection Scores
Even with the new statistical tests, the empirical FPRs are

still higher than the theoretical ones, which is problematic for
the reliability of the detection. In fact, Kirchenbauer et al. [18]
mention that random variables are only pseudo-random since
repeated windows generate the same secret. This can happen
even in a short text and especially in formatted data. For
instance in a bullet list, the sequence of tokens \n\n*_ repeats
a lot as shown in Fig. 3. Repetition pulls down the assumption
of independence necessary for computing the p-values.

We experimented with two simple heuristics mitigating this
issue at the detection stage. The first one takes into account a
token only if the watermark context window has not already
been seen during the detection. The second scores the tokens
for which the h + 1-tuple formed by {watermark context +

oth ri ps \n
\n
N es oth ri ps is a genus of th ri ps in the family Ph la e
oth rip idae . \n
\n
## Species \n
\n
* N es oth ri ps a lex andra e \n
* N es oth ri ps a or ist us \n
* N es oth ri ps ar to car pi \n
* N es oth ri ps bad ius \n
* N es oth ri ps bar row i \n
* N es oth ri ps bre vic oll is \n
* N es oth ri ps brig al owi \n
* N es oth ri ps cap ric orn is \n
* N es oth ri ps car ver i \n
* N es oth ri ps co or ong i \n
* N es oth ri ps dou l li \n
* N es oth ri ps east op i \n
* N es oth ri ps f od inae \n
* N es oth ri ps hem id is cus \n
* N es oth ri ps l ativ ent ris \n
* N es oth ri ps lever i \n
* N es oth ri ps major \n
* N es oth ri ps mal ac ca e \n
* N es oth ri ps minor \n
* N es oth ri ps n iger \n
* N es oth ri ps n ig ris et is \n
* N es oth ri ps

Fig. 3: Typical example of a vanilla text with low p-value because
of repeated tokens. It is 10�21, using the greenlist watermark with
� = 1/4 and h = 2 on 256 tokens (we only show half of the text).

(a) Z-tests (b) Tests of III-B (c) Tests of III-B, rectified with III-C

Fig. 2: Empirical checks of false positive rates for different watermarks and values of the context width h. Results are computed over 10
master keys ⇥ 100k Wikipedia examples of length 256 tokens. We compare three detection tests: (Left) using Z-tests; (Middle) using new
statistical tests presented in III-B; (Right) using the new statistical tests with the rectified scoring strategy of III-C. Theoretical values do not
hold in practice for Z-tests, even for high values of the watermarking context width h, and empirical FPRs do not match theoretical ones.
This is solved by basing detection on grounded statistical tests and analytic p-values, as well as by revising the scoring strategy.

III. RELIABILITY OF THE DETECTION

A. Empirical Validation of FPR with Z-Scores
So far, the FPR was checked on small scale experiments:

around 500 negative samples [18], [19], [21]. This section
conducts large-scale studies to validate the current approaches.

We select 100k texts from multilingual Wikipedia to cover
the distribution of natural text. We tokenize them using
LLaMA’s tokenizer, and cut T = 256 tokens from each text.
We run the detection tests with varying length h for the context
window used when seeding the RNG (Sect. II-D). We repeat
this experiment with 10 different master keys, which makes
1M detection results under H0 for each method and h value.
For the detection of the greenlist watermark, we use � = 0.25.

Fig. 2a compares empirical and theoretical FPRs. The
obvious observation is that the theoretical guarantees do not
hold in practice: the empirical FPRs are much higher than the
theoretical ones. We also observed in practice that distributions
of p-values were not uniform (which should be the case under
H0). Besides, the larger the watermarking context window h,
the closer we get to theoretical guarantees. In pratice, one
would need h >> 8 to get reliable p-values, but this makes
the watermarking method less robust to attacks on generated
text because it hurts synchronization.

B. New Non-Asymptotical Statistical Tests
The Gaussian assumption about the Z-tests breaks down for

short texts. Here are non-asymptotical tests for both methods.
They reduce the gap between empirical and theoretical FPR,
especially for low FPR values as shown in Fig. 2.

1) Kirchenbauer et al. [18]: Under H0, we assume that the
event x

(t)
2 Gk(t) occurs with probability �, and that these

events are i.i.d. Therefore, ST (2) is distributed as a binomial
of parameters T and �. Consider a text under scrutiny whose
score equals s. The p-value is defined as the probability of
obtaining a score higher than s under H0:

p-value(s) = P(ST > s|H0) = I�(s, T � s+ 1), (6)

because S ⇠ B(T, �) whose c.d.f. is expressed by Ix(a, b) the
regularized incomplete Beta function.

2) Aaronson et al. [17]: Under H0, we assume that the
text under scrutiny and the secret vector are independent, so
that rx(t)

i.i.d.
⇠ U(0, 1). Therefore, ST (3) follows a �(T, 1)

distribution. The p-value associated to a score s reads:

p-value(s) = P(ST > s|H0) =
�(T, s)

�(T )
, (7)

where � is the upper incomplete gamma function. Under H1,
the score is expected to be higher as proven in App. A, so the
p-value is likely to be small.

C. Rectifying the Detection Scores
Even with the new statistical tests, the empirical FPRs are

still higher than the theoretical ones, which is problematic for
the reliability of the detection. In fact, Kirchenbauer et al. [18]
mention that random variables are only pseudo-random since
repeated windows generate the same secret. This can happen
even in a short text and especially in formatted data. For
instance in a bullet list, the sequence of tokens \n\n*_ repeats
a lot as shown in Fig. 3. Repetition pulls down the assumption
of independence necessary for computing the p-values.

We experimented with two simple heuristics mitigating this
issue at the detection stage. The first one takes into account a
token only if the watermark context window has not already
been seen during the detection. The second scores the tokens
for which the h + 1-tuple formed by {watermark context +

oth ri ps \n
\n
N es oth ri ps is a genus of th ri ps in the family Ph la e
oth rip idae . \n
\n
## Species \n
\n
* N es oth ri ps a lex andra e \n
* N es oth ri ps a or ist us \n
* N es oth ri ps ar to car pi \n
* N es oth ri ps bad ius \n
* N es oth ri ps bar row i \n
* N es oth ri ps bre vic oll is \n
* N es oth ri ps brig al owi \n
* N es oth ri ps cap ric orn is \n
* N es oth ri ps car ver i \n
* N es oth ri ps co or ong i \n
* N es oth ri ps dou l li \n
* N es oth ri ps east op i \n
* N es oth ri ps f od inae \n
* N es oth ri ps hem id is cus \n
* N es oth ri ps l ativ ent ris \n
* N es oth ri ps lever i \n
* N es oth ri ps major \n
* N es oth ri ps mal ac ca e \n
* N es oth ri ps minor \n
* N es oth ri ps n iger \n
* N es oth ri ps n ig ris et is \n
* N es oth ri ps

Fig. 3: Typical example of a vanilla text with low p-value because
of repeated tokens. It is 10�21, using the greenlist watermark with
� = 1/4 and h = 2 on 256 tokens (we only show half of the text).

From their implementation With our patch

Conclusion : No fair comparison if FPR is not fully controlled



Approche A: LLM watermarking
Nesothrips is a genus of thrips in the family Phlaeothripidae

Species:

• Nesothrips alexandrae

• Nesothrips aoristus

• Nesothrips artocarpi

• Nesothrips badius

• Nesothrips barrowi

• Nesothrips brevicollis

• Nesothrips brigalowi

• Nesothrips capricornis

• Nesothrips carveri

• Nesothrips coorongi

• Nesothrips doulli

• Nesothrips eastopi

• Nesothrips fodinae

• Nesothrips hemidiscus

• Nesothrips lativentris

1
'
≈ 0.5 > 𝛾 = 0.25 →    deemed as watermarked



Approche A: LLM watermarking

• 10k positive AI-generated / 10k negative human generated
(from OpenAssistant Conversations dataset)

1
2
3
4

Watermark
Watermark



Conclusion: Generative AI + watermarking

Complementary technical means
• Watermarking (real and AI-generated)
• Forensics
• Metadata (C2PA)
• Similarity search (fingerprinting)

Many unsolved questions remain:
• Is this a threat?

• Who runs the detector? Is it publicly available?
• Billions of contents will be generated, watermarked with the same technique

• Once compromised, the attacker may
• Remove the watermark to pretend this content is real
• Add a watermark to pretend this content is fake



Outlines

Forensics Watermarking
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