Loris Bergerat, Anas Boudi, Quentin Bourgerie, Ilaria Chillotti, **Damien Ligier**, Jean-Baptiste Orfila & Samuel Tap

Parameter Optimization Larger Precision for (T)FHE

26 June 2023

Journées Nationales 2023 du GDR Sécurité Informatique

Agenda

FHE and TFHE

Atomic Pattern

FHE Parameter Optimization

WoP-PBS

Conclusion

03
13
23
40
52

FHE and TFHE

too much noise $\boldsymbol{\fbox} \implies \text{incorrect decryption}$

6

7

8

 $\mathscr{R}_q = \mathbb{Z}_q[X]/(X^N + 1)$

Atomic Pattern

Addition & LUT evaluation ONLY

CJP Atomic Pattern

Graph of CJP AP

Graph of CJP AP

FHE Parameter Optimization

Overview

Overview: Goals

→ Using the lattice estimator

Noise Model to track the noise along the computation

Overview: Problem

FHE Parameter Optimization

GBA Atomic Pattern

CJP

1 message

 m_1

1 message

GBA Atomic Pattern

FHE Parameter Optimization

CJP vs GBA

Context-aware comparison

Ζ

29

Efficient alternative to **TFHE PBS above 5 bits**

Allows bigger precision (up to **21 bits**)

Large precision are very costly

 $Cost(21 \ bits) \approx 2^{17} \cdot Cost(5 \ bits)$

WoP-PBS

Overview

1 message

WoP-PBS

Comparisons

This work Atomic Pattern

Ζ

Efficient alternative to **TFHE PBS above 5 bits**

Allows bigger precision (up to **21 bits**)

Large precision are very costly

 $Cost(21 \ bits) \approx 2^{17} \cdot Cost(5 \ bits)$

CJP vs GBA vs this work

---- CJP21 GBA21: 2 blocks GBA21: 3 blocks this work: 1 block this work: 2 blocks this work: 4 blocks

Ζ

Efficient alternative to GBA-PBS above **10 bits**

Allows bigger precision (up to **24 bits**)

Large precision are less costly

 $Cost(21 \ bits) \approx 2\sqrt{7} \cdot Cost(5 \ bits)$ $\approx 2^{12} \cdot \text{Cost}(5 \text{ bits})$

Conclusion

Other results

Other results

Large Integers

CRT, radix, hybrid encoding

Failure Probability

AP and graph level

PBS Insertion

In Dot Product

Parameter Optimization & Larger Precision for (T)FHE

WoP-PBS Analysis

LMP, this work

KS Position

CJP, CGGI, KS-free

Several KSK/BSK

CJP

Conclusion

Future Work

Future Work

Better Cost Model

In the paper: algorithmic complexities

Multi Parameter Sets

In the paper: only one parameter set

Better Noise Model

In the paper: from [CLOT21]

Graph Comparison

Real use cases

Bibliography

[CGGI20] I. Chillotti, N. Gama, M. Georgieva, M. Izabachène. TFHE: Fast Fully Homomorphic Encryption over the Torus. Journal of Cryptology 2020.

[CJP21] Ilaria Chillotti, Marc Joye, and Pascal Paillier. Programmable bootstrapping enables efficient homomorphic inference of deep neural networks. In CSCML 202

[CLOT21] I. Chillotti, D. Ligier, J-B Orfila, and S. Tap. Improved programmable bootstrapping with larger precision and efficient arithmetic circuits for the. In ASIACRYPT 2021

[GBA21] A. Guimaraes, E. Borin, D. Aranha. Revisiting the functional bootstrap in TFHE. IACR Transactions on Cryptographic Hardware and Embedded Systems

[LMP21] Zeyu Liu, Daniele Micciancio, and Yuriy Polyakov. Large-precision homomorphic sign evaluation using fhew/tfhe bootstrapping. Cryptology ePrint Archive, Report 2021/1337

Thank you.

Contact and Links

Want to know more about this work? https://eprint.iacr.org/2022/704.pdf ilaria.chillotti@zama.ai damien.ligier@zama.ai

<u>zama.ai</u>

<u>Github</u>

Community links

