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X.509

● Certification authorities (CAs) sign 
certificates to certify their validity

● Issuer: CA identification
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You want to be able to identify yourself and know that you are talking to the right person

● Public Key Infrastructure Standard

Structure:
● Signature Algorithm

● Key exchange algorithm and owner’s 
public key

● Signature Algorithm and signature Value

● Validity dates

● Owner’s identity
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ASN.1
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Standard interface description language

Bytes

   ASN1

X.509
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Code Coverage

● Compile and test with many certificates
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Directed acyclic graph (DAG):

if

elif

else

● Count the number of branches for each 
branching point reached

● Count the number or branches reached
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OpenSSL
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Implements SSL and TLS protocols

Study coverage of the certificate verification

Secure communication over computer networks

Very convoluted implementation



MbedTLS

Implements TLS for constrained devices

Study coverage of the certificate verification
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Secure communication over computer networks

Small hardware footprint



Research Questions

Generating efficient tests

Avoid as much as possible human 
intelligence

How to determine if a branch is 
reachable

Variables influencing a given 
branching point
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Automatic generation of tests Maximum coverage



Technical choices
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X.509 Parsing & 
Coverage Branch Exploration

Certificate Mutation



X.509 Parsing & Coverage
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Certificates

Parser

OpenSSL/MbedTLS 

Coverage

GCOVR : Python Library

1. OpenSSL
2. MbedTLS

1. GCOVr
2. LCOV

Parser:

Coverage:

X.509 



Branch Exploration
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Python

Coverage

Branches not Covered

GDB

CERTIFICATE

OFFSET

1. GDB
2. Logging in X.509 

parsing script 
(OpenSSL/MbedTLS)

DEBUG:



Certificate Mutation
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X.509

OFFSET

Bytes

ASN.1

X.509

New Certificate : PEM ?

Python Script

Python Library: 
ASN.1

Python Library: 
Cryptography



Architecture
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Prototype: Day 1
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Prototype: Day 2

20



Prototype: Ideal Structure

21



PEM Generators 1
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PEM Generators 2
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Results
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Day 1: Setting Up 
Research questions:

● Get familiar with the subject
● Obtain a X.509 corpus 
● Think about the architecture 
● Install the tools

Steps:

● Verify our comprehension of the 
subject

● Find a corpus open licence
● Compile OpenSSL

Sticking points:

● Compile OpenSSL … with the correct options
● Extract the X.509 corpus
● Modify a byte in X.509 certificate
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Day 2: First Prototype
Research problems:

● Extract the X.509 corpus
● Use (intelligently) the coverage 

tools 
● Develop mutation generators

Steps:

● Bytes mutation generator
● Evolution of our architecture
● GCOVr use for coverage
● First version of a running 

prototype

Sticking points:

● Extract coverage info from GCOV 
et LCOV

● Create temporary coverage files
● Compile MbedTLS
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● Extend mutations to ASN.1 
● Solve bugs 



Day 3: Improving our Generators 
Research questions:

● Increase the mutations support 
by the generators

● Create temporary coverage files

Steps:

● Work on ASN.1 and X.509 
mutations generator

● Prototype 
● X.509 base64 structure 

analysis 

Sticking points:

● Mutate X.509 certificates
● Automate mutations on ASN.1 structure
● Solve bugs
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Day 4: Proving our Prototype … and Making Slides …

Research questions:

● Integration of the mutation 
generators

● Test prototype with a corpus 
of certificates

● Make good slides

Steps:

● Creation of slides
● Finishing generators
● Run prototype on OpenSSl and 

MbedTLS
● Optimization of the offset 

problem

Sticking points:

● Lookup table base64 vs. fields X.509
● Integration of the generators 
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Some Numbers
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OpenSSL:55,8%

MbedTLS:42,5%

OpenSSL:  

72,9%

OpenSSL: 74,0%

Diagnose OpenSSL 
62,1%

Diagnose OpenSSL
Diagnose on MbedTLS 
51,2%

MbedTLS: 46,9%

Diagnose MbedTLS:48,6%

74,0%

MbedTLS: 65,1%

OpenSSL : asn1_lib.c
MbedTLS: x509_crt.c



In Short …

● A semi-automatic prototype 
● Theoretical 100% coverage 
● Coverage increase of around 20% in the best cases

● Report on Github of 3 Undefined Behaviour(UB) on MbedTLS (with Pascal 
assistance) and 2 X.509 certificates from our corpus 

30



Future Works
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Full automation

Enhancing mutations



Recalling the Ideal Architecture
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Full Automation

Dependency analysis (hard problem)

Heuristics
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Actually implement the scheduler

Bytes / ASN.1 / X.509 ?

How far from the current offset ?

Automatic offset finding Determining mutation kind



Enhanced Mutation

Trying promising mutations first

Mutation kind interleaving
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Avoiding to try similar mutations

Mutation scheduling Mutation diversity



Test Cases Efficiency

Always generate “unique” cases

Filter out redundant cases
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Search heuristics

Metrics for projected coverage

Corpus minimization Focus branches of interest



Conclusion
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A semi-automated tool

100% is feasible

State of the art:

● AFL / LibFuzzer

● Symbolic Execution / 

Formal methods



Thanks for 
your attention!
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Demo time!
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From 22 % to 56 %

Proof that “semi-automatic”-ness is a real thing


