
Semi- automatic tool for test cases
generation on X.509 parser

REDOCS 2022

Ferran Alborch • Alba Martínez • Ana Rodríguez
Yakini Tchouka • Thomas Vigouroux

Supervised by Pascal Cuoq
1

Context

2

Definitions

3

➔ X.509

➔ ASN.1

➔ Coverage

➔ OpenSSL - MbedTLS

Definitions

4

➔ X.509

➔ ASN.1

➔ Coverage

➔ OpenSSL - MbedTLS

X.509

● Certification authorities (CAs) sign
certificates to certify their validity

● Issuer: CA identification

5

You want to be able to identify yourself and know that you are talking to the right person

● Public Key Infrastructure Standard

Structure:
● Signature Algorithm

● Key exchange algorithm and owner’s
public key

● Signature Algorithm and signature Value

● Validity dates

● Owner’s identity

Definitions

6

➔ X.509

➔ ASN.1

➔ Coverage

➔ OpenSSL - MbedTLS

ASN.1

7

Standard interface description language

Bytes

 ASN1

X.509

Definitions

8

➔ X.509

➔ ASN.1

➔ Coverage

➔ OpenSSL - MbedTLS

Code Coverage

● Compile and test with many certificates

9

Directed acyclic graph (DAG):

if

elif

else

● Count the number of branches for each
branching point reached

● Count the number or branches reached

Definitions

10

➔ X.509

➔ ASN.1

➔ Coverage

➔ OpenSSL - MbedTLS

OpenSSL

11

Implements SSL and TLS protocols

Study coverage of the certificate verification

Secure communication over computer networks

Very convoluted implementation

MbedTLS

Implements TLS for constrained devices

Study coverage of the certificate verification

12

Secure communication over computer networks

Small hardware footprint

Research Questions

Generating efficient tests

Avoid as much as possible human
intelligence

How to determine if a branch is
reachable

Variables influencing a given
branching point

13

Automatic generation of tests Maximum coverage

Technical choices

14

X.509 Parsing &
Coverage Branch Exploration

Certificate Mutation

X.509 Parsing & Coverage

15

Certificates

Parser

OpenSSL/MbedTLS

Coverage

GCOVR : Python Library

1. OpenSSL
2. MbedTLS

1. GCOVr
2. LCOV

Parser:

Coverage:

X.509

Branch Exploration

16

Python

Coverage

Branches not Covered

GDB

CERTIFICATE

OFFSET

1. GDB
2. Logging in X.509

parsing script
(OpenSSL/MbedTLS)

DEBUG:

Certificate Mutation

17

X.509

OFFSET

Bytes

ASN.1

X.509

New Certificate : PEM ?

Python Script

Python Library:
ASN.1

Python Library:
Cryptography

Architecture

18

Prototype: Day 1

19

Prototype: Day 2

20

Prototype: Ideal Structure

21

PEM Generators 1

22

PEM Generators 2

23

Results

24Day 1 Day 2 Day 3 Day 4

Day 1: Setting Up
Research questions:

● Get familiar with the subject
● Obtain a X.509 corpus
● Think about the architecture
● Install the tools

Steps:

● Verify our comprehension of the
subject

● Find a corpus open licence
● Compile OpenSSL

Sticking points:

● Compile OpenSSL … with the correct options
● Extract the X.509 corpus
● Modify a byte in X.509 certificate

25

Day 2: First Prototype
Research problems:

● Extract the X.509 corpus
● Use (intelligently) the coverage

tools
● Develop mutation generators

Steps:

● Bytes mutation generator
● Evolution of our architecture
● GCOVr use for coverage
● First version of a running

prototype

Sticking points:

● Extract coverage info from GCOV
et LCOV

● Create temporary coverage files
● Compile MbedTLS

26

● Extend mutations to ASN.1
● Solve bugs

Day 3: Improving our Generators
Research questions:

● Increase the mutations support
by the generators

● Create temporary coverage files

Steps:

● Work on ASN.1 and X.509
mutations generator

● Prototype
● X.509 base64 structure

analysis

Sticking points:

● Mutate X.509 certificates
● Automate mutations on ASN.1 structure
● Solve bugs

27

Day 4: Proving our Prototype … and Making Slides …

Research questions:

● Integration of the mutation
generators

● Test prototype with a corpus
of certificates

● Make good slides

Steps:

● Creation of slides
● Finishing generators
● Run prototype on OpenSSl and

MbedTLS
● Optimization of the offset

problem

Sticking points:

● Lookup table base64 vs. fields X.509
● Integration of the generators

28

Some Numbers

29

OpenSSL:55,8%

MbedTLS:42,5%

OpenSSL:

72,9%

OpenSSL: 74,0%

Diagnose OpenSSL
62,1%

Diagnose OpenSSL
Diagnose on MbedTLS
51,2%

MbedTLS: 46,9%

Diagnose MbedTLS:48,6%

74,0%

MbedTLS: 65,1%

OpenSSL : asn1_lib.c
MbedTLS: x509_crt.c

In Short …

● A semi-automatic prototype
● Theoretical 100% coverage
● Coverage increase of around 20% in the best cases

● Report on Github of 3 Undefined Behaviour(UB) on MbedTLS (with Pascal
assistance) and 2 X.509 certificates from our corpus

30

Future Works

31

Full automation

Enhancing mutations

Recalling the Ideal Architecture

32

Full Automation

Dependency analysis (hard problem)

Heuristics

33

Actually implement the scheduler

Bytes / ASN.1 / X.509 ?

How far from the current offset ?

Automatic offset finding Determining mutation kind

Enhanced Mutation

Trying promising mutations first

Mutation kind interleaving

34

Avoiding to try similar mutations

Mutation scheduling Mutation diversity

Test Cases Efficiency

Always generate “unique” cases

Filter out redundant cases

35

Search heuristics

Metrics for projected coverage

Corpus minimization Focus branches of interest

Conclusion

36

A semi-automated tool

100% is feasible

State of the art:

● AFL / LibFuzzer

● Symbolic Execution /

Formal methods

Thanks for
your attention!

37

ferran.alborch@orange.com
alba.martinez-anton@lis-lab.fr

ana-margarita.rodriguez-cordero@loria.fr
yakini.tchouka@femto-st.fr

thomas.vigouroux@univ-grenoble-alpes.fr

mailto:ferran.alborch@orange.com
mailto:alba.martinez-anton@lis-lab.fr
mailto:ana-margarita.rodriguez-cordero@loria.fr
mailto:yakini.tchouka@femto-st.fr
mailto:thomas.vigouroux@univ-grenoble-alpes.fr

Biblio

38

Python:
- Documentation lib gdb
- Documentation lib cryptography

Couverture:
- Documentation gcov, lcov et gcovr

Fuzzers

OpenSSL et MbedTLS

Demo time!
39

From 22 % to 56 %

Proof that “semi-automatic”-ness is a real thing

