
Gigue: A JIT Code Binary Generator for

Hardware Testing

Quentin Ducasse, Pascal Cotret, and Löıc Lagadec

November 13, 2023

1



Context & Background



Context - JIT Code

The JIT code region is a key component:

• Performance-critical - optimized machine code

• Security-critical - writable and executable memory

2



Context - JIT Code

The JIT code region is a key component:

• Performance-critical - optimized machine code

• Security-critical - writable and executable memory

2



Context - JIT Code

The JIT code region is a key component:

• Performance-critical - optimized machine code

• Security-critical - writable and executable memory

History of attacks [8, 1, 6] and defenses [4, 7] targeting JIT code!

3



Context - JIT Code

The JIT code region is a key component:

• Performance-critical - optimized machine code

• Security-critical - writable and executable memory

History of attacks [8, 1, 6] and defenses [4, 7] targeting JIT code! 3



Context - Hardware Primitives

Intel SGX: Secure Enclave with encrypted content and controlled IOs

4



Context - Hardware Primitives

Intel MPK: Intra-process Isolation with Memory Protection Keys

5



Context - Hardware Primitives

Intel CET: Control-Flow Enforcement using a Shadow Stack and

Indirect Branch Tracking
6



JIT defense mechanisms

7



Background - Pharo VM

The Pharo VM uses an indirect threaded interpreter and a linear

non-optimising method-based JIT compiler, recently ported to

RISC-V [3].

8



Background - RISC-V ISA

The RISC-V ISA [9, 10] defends three main objectives:

• Open-source: open standards SoC and core implementations

• Modular: instruction groups to support a wide range of applications

• Extensible: several standard-allocated spaces for extensions

Groups of instructions

• I-nteger

• M-ultiplication

• A-tomics

• . . .

• RV64IMAFDC supports an OS!

Extension vectors

• Opcodes custom0-3

• Hints e.g. lui x0, val

=⇒ Guarantee of compatibility

with future evolutions of the

standard

9



Background - RISC-V ISA

The RISC-V ISA [9, 10] defends three main objectives:

• Open-source: open standards SoC and core implementations

• Modular: instruction groups to support a wide range of applications

• Extensible: several standard-allocated spaces for extensions

Groups of instructions

• I-nteger

• M-ultiplication

• A-tomics

• . . .

• RV64IMAFDC supports an OS!

Extension vectors

• Opcodes custom0-3

• Hints e.g. lui x0, val

=⇒ Guarantee of compatibility

with future evolutions of the

standard

9



Background - RISC-V ISA

The RISC-V ISA [9, 10] defends three main objectives:

• Open-source: open standards SoC and core implementations

• Modular: instruction groups to support a wide range of applications

• Extensible: several standard-allocated spaces for extensions

Groups of instructions

• I-nteger

• M-ultiplication

• A-tomics

• . . .

• RV64IMAFDC supports an OS!

Extension vectors

• Opcodes custom0-3

• Hints e.g. lui x0, val

=⇒ Guarantee of compatibility

with future evolutions of the

standard

9



Custom Instructions Examples

Which custom instructions?

Three examples that will be added at different levels in Gigue:

• E1: ror[i], rol[i]

rotation instructions (still in draft)

(+ 4 instructions)

1

2 rori t1, t1, 2

3 ror t1, t1, t2

4 roli t1, t1, 2

5 rol t1, t1, t2

10



Custom Instructions Examples

Which custom instructions?

Three examples that will be added at different levels in Gigue:

• E1: ror[i], rol[i]

rotation instructions (still in draft)

(+ 4 instructions)

• E2: cficall, cfiret

shadow-stack instructions [2]

(+ 2 instructions)

1 method1:

2 # Store the return

address↪→

3 cficall

4 # Call method2

5 call method2

6 # Load the return

address↪→

7 cfiret

1 method2:

2 ...

3 ret

11



Custom Instructions Examples

Which custom instructions?

Three examples that will be added at different levels in Gigue:

• E1: ror[i], rol[i]

rotation instructions (still in draft)

(+ 4 instructions)

• E2: cficall, cfiret

shadow-stack instructions [2]

(+ 2 instructions)

• E3: chdom, retdom, l*1, s*1

dedicated domains and associated

memory accesses [5]

(+ 15 instructions)

1 interpretation_loop:

2 ...

3 # Calling a JIT method

4 la t1, jit_method

5 chdom x0, 0(t1)

6 ...

1 jit_method:

2 # Loading JIT data

3 lw1 t0, 24(s0)

4 # Storing JIT data

5 sw1 t0, 24(s0)

6 ...

7 retdom ra, 0(ra) 12



Motivation & Design



Gigue - Motivation

Assumptions:

(1) JIT and AOT

compiler(s) are the only

components modifying

machine code.

(2) A snapshot of the JIT

code region is

representative of changes

made by those

components.

Motivation

Flattening the software stack significantly speeds up hardware

development to support VM-specific custom instructions.

13



Gigue - Motivation

Assumptions:

(1) JIT and AOT

compiler(s) are the only

components modifying

machine code.

(2) A snapshot of the JIT

code region is

representative of changes

made by those

components.

Motivation

Flattening the software stack significantly speeds up hardware

development to support VM-specific custom instructions.

13



Gigue - Motivation

Assumptions:

(1) JIT and AOT

compiler(s) are the only

components modifying

machine code.

(2) A snapshot of the JIT

code region is

representative of changes

made by those

components.

Motivation

Flattening the software stack significantly speeds up hardware

development to support VM-specific custom instructions.

13



Gigue - Overview

Workload Generator with Custom Instructions

Gigue is a random workload generator that produces an executable file

modeled after the JIT code region, with custom instructions, ready to

execute on top of extended cores.

• Parametrization: Diverse application and VM qualification

• Modularity: Instructions and JIT elements extensions

• Testing: Sanity checks and custom execution model

14



Gigue - Overview

Workload Generator with Custom Instructions

Gigue is a random workload generator that produces an executable file

modeled after the JIT code region, with custom instructions, ready to

execute on top of extended cores.

• Parametrization: Diverse application and VM qualification

• Modularity: Instructions and JIT elements extensions

• Testing: Sanity checks and custom execution model

14



Design - Elements

Three main components integrated in Gigue JIT code region are:

• Methods: Filled with random instructions and calls

• PICs: Type-guards, switch to the corresponding methods

• Trampolines: Routine machine code stubs

15



Design - Structure & Execution

(1) Interpretation Loop

that calls all JIT elements

in a random order.

(2) Each JIT element

calls a number of other

elements.

(3) Both have access to

trampolines for routines.

=⇒ The resulting binary is

compiled using the binary

framework provided by

RISC-V assembly tests,

riscv-tests.

16



Gigue repository

Figure 1: https://github.com/QDucasse/gigue

17

https://github.com/QDucasse/gigue


Generation - Binary Generation Recap

Two main elements are used, (1) a Generator responsible for higher

level structure handling and (2) a Builder for instruction emission.

1. Instanciate trampolines

2. Determine method base size - sizeJIT , nbmethods

3. Instanciate elements - weightselts

• Method - basesize , µsize , σsize

• PIC - nbcases

4. Fill elements with random instructions - weightsinstrs , regs

5. Patch calls - µcalls , σcalls , λdepth

6. Generate data - sizedata, generator

7. Link in a static self-contained binary

18



Generation - Sanity Checks

The random nature of the generated binaries requires sanity checks:

• Controlled Registers: fixed at generation.

• Sanitized Jumps/Branches: to prevent call graph changes.

• Data Accesses: indirect access through a dedicated base register.

• Call Patching: call numbers and depth are attributed at JIT

element instanciation to fix the call graph

=⇒ patched once all elements are filled.

+ Testing!

19



Modularity & Test Framework



Modularity - Adding Custom Instructions

Using the three previous examples:

• E1: rot[i], rol[i]

rotation instructions (still in draft)

(+ 4 instructions)

• E2: cficall, cfiret

shadow-stack instructions [2]

(+ 2 instructions)

• E3: chdom, retdom, l*1, s*1

dedicated domains and associated

memory accesses [5]

(+ 15 instructions)

• Impact: Added to the random

generation of I and R instructions.

(+161/12 loc)

• Impact: Added to method

epilogues and call generation.

(+154/12 loc)

• Impact: Replaced random

generation of S and L, added to

method epilogues and call

generation.

(+502/54 loc)

20



Modularity - Adding Custom Instructions

Using the three previous examples:

• E1: rot[i], rol[i]

rotation instructions (still in draft)

(+ 4 instructions)

• E2: cficall, cfiret

shadow-stack instructions [2]

(+ 2 instructions)

• E3: chdom, retdom, l*1, s*1

dedicated domains and associated

memory accesses [5]

(+ 15 instructions)

• Impact: Added to the random

generation of I and R instructions.

(+161/12 loc)

• Impact: Added to method

epilogues and call generation.

(+154/12 loc)

• Impact: Replaced random

generation of S and L, added to

method epilogues and call

generation.

(+502/54 loc)

20



Modularity - Adding Custom Instructions

Using the three previous examples:

• E1: rot[i], rol[i]

rotation instructions (still in draft)

(+ 4 instructions)

• E2: cficall, cfiret

shadow-stack instructions [2]

(+ 2 instructions)

• E3: chdom, retdom, l*1, s*1

dedicated domains and associated

memory accesses [5]

(+ 15 instructions)

• Impact: Added to the random

generation of I and R instructions.

(+161/12 loc)

• Impact: Added to method

epilogues and call generation.

(+154/12 loc)

• Impact: Replaced random

generation of S and L, added to

method epilogues and call

generation.

(+502/54 loc)

20



Modularity - Adding Custom Instructions

Using the three previous examples:

• E1: rot[i], rol[i]

rotation instructions (still in draft)

(+ 4 instructions)

• E2: cficall, cfiret

shadow-stack instructions [2]

(+ 2 instructions)

• E3: chdom, retdom, l*1, s*1

dedicated domains and associated

memory accesses [5]

(+ 15 instructions)

• Impact: Added to the random

generation of I and R instructions.

(+161/12 loc)

• Impact: Added to method

epilogues and call generation.

(+154/12 loc)

• Impact: Replaced random

generation of S and L, added to

method epilogues and call

generation.

(+502/54 loc)

20



Modularity - Test Framework

Unicorn defines flexible wrappers

triggered on events such as exceptions,

memory accesses, or register values.

=⇒ We extend them to catch custom

instructions!

Using the three previous examples:

• E1: Software rotation

implementation.

• E2: List containing the shadow

stack.

• E3: Domain checking and

duplicated instructions.

21



Modularity - Test Framework

Unicorn defines flexible wrappers

triggered on events such as exceptions,

memory accesses, or register values.

=⇒ We extend them to catch custom

instructions!

Using the three previous examples:

• E1: Software rotation

implementation.

• E2: List containing the shadow

stack.

• E3: Domain checking and

duplicated instructions.

21



Setup & Use Case



Use case - Instruction-level Memory Isolation

Implementation of domains over the physical memory protection settings

for JIT code regions.

Figure 2: Kim, H., Lee, J., Pratama, D., Awaludin, A. M., Kim, H., & Kwon,

D. (2020). RIMI. Proceedings of the 39th International Conference on

Computer-Aided Design https://doi.org/10.1145/3400302.3415727

22

https://doi.org/10.1145/3400302.3415727 


Use case - Setup for Rocket core

The hardware development stack is

already complex and involves several

steps:

1. Core definition in a high-level

HDL (Chisel)

2. Compilation to a lower-level

HDL (SystemVerilog/VHDL)

3. Cycle-accurate Verilator

simulator compilation (C++)

=⇒ Execute the Gigue’d binary

23



CVA6 implementation (in progress!)

Figure 3: CVA6 default schematic. Current modifications:

https://github.com/QDucasse/cva6/tree/jitdomain

24

https://github.com/QDucasse/cva6/tree/jitdomain


Software unit tests for the custom CVA6 code

https://github.com/QDucasse/

jitdomain-tests

25

https://github.com/QDucasse/jitdomain-tests
https://github.com/QDucasse/jitdomain-tests


Conclusion & Future Works

We presented Gigue, a workload generator for hardware testing:

• Parametrizable - Qualify VMs and applications

• Modular - Simplified addition of elements and instructions

• Testing - Software guarantees and ease of custom handling

We are implementing different security solutions in the CVA6 code: from

open-source code, solutions released in open-source repositories.

Tools

https://github.com/QDucasse/gigue

https://github.com/QDucasse/jitdomain-tests

Notes about the software and the hardware

CVA6: http://pcotret.gitlab.io/blog/tags/cva6/

Rocket: https://qducasse.github.io/tags/rocket/

26

https://github.com/QDucasse/gigue
https://github.com/QDucasse/jitdomain-tests
http://pcotret.gitlab.io/blog/tags/cva6/
https://qducasse.github.io/tags/rocket/


Gigue: A JIT Code Binary Generator for

Hardware Testing

Quentin Ducasse, Pascal Cotret, and Löıc Lagadec

November 13, 2023

27



References i

M. Athanasakis, E. Athanasopoulos, M. Polychronakis,

G. Portokalidis, and S. Ioannidis.

The devil is in the constants: bypassing defenses in browser

JIT engines.

In Proceedings of the 22nd Network and Distributed System Security

Symposium (NDSS’15). NDSS, 2015.

A. De, A. Basu, S. Ghosh, and T. Jaeger.

FIXER: Flow integrity extensions for embedded RISC-V.

In Proceedings of the 26th Design, Automation & Test in Europe

Conference & Exhibition (DATE’19), pages 348–353. IEEE, 2019.

28



References ii

Q. Ducasse, G. Polito, P. Tesone, P. Cotret, and L. Lagadec.

Porting a JIT compiler to RISC-V: Challenges and

opportunities.

In Proceedings of the 19th International Conference on Managed

Programming Languages and Runtimes (MPLR’22), pages 112–118.

ACM, 2022.

T. Frassetto, D. Gens, C. Liebchen, and A.-R. Sadeghi.

JITguard: hardening just-in-time compilers with SGX.

In Proceedings of the 24th ACM SIGSAC Conference on Computer

and Communications Security (CCS’17), pages 2405–2419. ACM,

2017.

29



References iii

H. Kim, J. Lee, D. Pratama, A. M. Awaludin, H. Kim, and D. Kwon.

RIMI: instruction-level memory isolation for embedded systems

on RISC-V.

In Proceedings of the 39th International Conference on

Computer-Aided Design (ICCAD’20), pages 1–9. ACM, 2020.

W. Lian, H. Shacham, and S. Savage.

A call to ARMs: understanding the costs and benefits of JIT

spraying mitigations.

In Proceedings of the 24th Network and Distributed System Security

Symposium (NDSS’17). NDSS, 2017.

T. Park, K. Dhondt, D. Gens, Y. Na, S. Volckaert, and M. Franz.

NoJITsu: locking down JavaScript engines.

In Proceedings of the 27th Network and Distributed System Security

Symposium (NDSS’20). NDSS, 2020.

30



References iv

A. Sintsov.

Writing JIT-spray shellcode for fun and profit.

Technical report, DSecRG: Digital Security Research Group, 2010.

A. Waterman, K. Asanovic, and S. Inc.

The RISC-V instruction set manual, Volume I: unprivileged

ISA, 2019.

A. Waterman, K. Asanovic, and S. Inc.

The RISC-V Instruction Set Manual, Volume II: Privileged

Architecture, 2021.

31


	Context & Background
	Motivation & Design
	Modularity & Test Framework
	Setup & Use Case

