Novel anomaly detection and classification algorithms for IP and mobile networks

Agathe Blaise

Journée thématique du GT SSLR 2021 sur la sécurité des réseaux - 11 mai 2021
Data analysis

Data: logs of communications, list of transactions, actions of the users, etc.

Potentially **thousands of logs** to handle each day

At first sight: **indecipherable** and no obvious patterns

Knowledge discovery:
- Find underlying patterns
- Define generic model for learning
Data analysis techniques

Supervised learning: learning based on example input-output pairs. → classification and regression techniques

Unsupervised learning: learns patterns from unlabelled data. → clustering and rule extraction techniques

Numerous anomalies
- Correlate them to find **events**
- Investigate **root causes, identity** of attackers, modus operandi…
Network behaviour analysis

- Traffic classification
- Traffic routing
- Congestion control
- Network security
- QoS/QoE management
- Users behaviour
- Local network
- Internet
Targets of data analysis

- **Malicious behaviour** from users
 - Denial-of-service attacks, network scanning, click fraud, man-in-the-middle

- **Unusual behaviour** from users
 - Bursts of traffic, special events, point-to-multipoint communications

- **Operational events**
 - Outages from the network or cloud operator, hardware failures, bad configurations
Data analysis

1. Aggregation level
 □ = host, flow?
 What to characterise?

2. Features choice
 → Attributes of the element
 How to characterise it?

□ = instance of traffic

3 “normal” classes as statistically viable

Anomaly
Aggregation levels

1. Aggregation level

Host behaviour

2. Features

Packet counts, frequency of communications, protocols
Aggregation levels

1. Aggregation level

Flow features

2. Features

Flow duration, flow volume, mean packet length, packet inter-arrival time, entropy
Aggregation levels

1. Aggregation level
 Port number / service id

2. Features
 Packet counts, diversity indices, protocols

→ Port or service-level rarely analyzed
Applications

Analysis of the usage of services, applications and port numbers

- **State-of the art:** reasons why unused technique
- **Objective:** assessing its benefits through lightweight techniques
- Examples in 3 different contexts:

 - **Internet-carrier level:** Split-and-Merge
 - **Local (corporate) network:** BotFingerPrinting
 - **Cellular networks:** ASTECH

Security aspects

Behavioural analysis
Per-service detection

Rather **underused** method:

- Numerous elements to analyse
 - In IP networks: 65,536 ports
 - In cellular networks: all services or mobile apps

→ **Requires an algorithm of low-complexity**

- Traffic obfuscation to avoid firewalls / encrypted traffic

→ **Deep Packet Inspection to induce used applications**
Per-service detection

Ports and applications **universally and permanently** used

Able to identify uncommon behaviours **not seen with flows and IP addresses**:

- **Long-term** detection as ports subsist over time
 → Detection of attackers **slowly spreading**

- **Several vantage points** as ports universally used
 → **Cross-validation**

- Application **failover or update**, **vulnerability scan** on a given port
 → Not visible by analysing IP addresses and flows
Our objectives

- **State-of-the art:** complex approaches, not fit for real networks

Objective: provide a pragmatic approach, lightweight, efficient and scalable

- Through the analysis of ports, services and applications usages
- Using statistical and machine learning techniques: classification, clustering, anomaly detection
- In various contexts: at IP-level, in local networks, in cellular networks
Split-and-Merge
Split-and-Merge
Split-and-Merge
At Internet carrier-level

- Detection of large-scale **attacks**: vulnerability scans
- Trend of major **botnets** spreading
Split-and-Merge

Challenge: major botnets spreading *not detected* by traditional Intrusion Detection Systems

Our approach:

- **Long-term** analysis of ports usage
- **Cross-validation** in several subnetworks

Our contribution: detection of large-scale vulnerability scans and *botnets* spreading
Server vulnerabilities
Exposed to the Internet, open ports, no authentication

Common Vulnerabilities and Exposures:

- CVE-2018-1000115 (memcached) port 11211
- CVE-2017-17215 (Huawei HG532 routers) port 37215

IoT devices vulnerabilities
Low computational power to run security functions

- CVE-2018-7445 (MikroTik devices) port 8291

→ Identification of these services or devices by port number.
Vulnerability scan

Port scan to identify devices hosting **vulnerable services**

- **IP addresses**
 - Attackers coming from everywhere
 - Each targeting the whole range of IP addresses

- **Port numbers**
 - Port spoofing
 - Range for ephemeral ports
 - Only point in common
 - Port scan on port 23
 - Port scan on port 2323
Split-and-Merge

Overview

• Long-term analysis of the usage of ports:
 1 - Features computation
 2 - Local anomaly detection
 3 - Central correlation
 4 - Fine-grained anomaly characterisation
Split-and-Merge

1 - Features computation

For each port \(p \):

- Source diversity index
- Destination diversity index
- Port diversity index
- Mean packet size
- Standard deviation of packet size
- Percentage of SYN packets
Split-and-Merge

2 - Local anomaly detection

Time series $x \rightarrow$ normal distribution $\mathcal{N}(\mu, \sigma^2)$ of mean μ and std σ

<table>
<thead>
<tr>
<th>port p</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature</td>
<td>7</td>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td>Feature</td>
<td>54</td>
<td>50</td>
<td>53</td>
</tr>
</tbody>
</table>

- Z-score of x_i: $Z = \frac{x_i - \mu}{\sigma}$
 - not resistant to outliers

- Modified Z-score using median and median std

If $M >$ threshold $T = 3.5 \rightarrow$ anomaly
Split-and-Merge
3 - Central correlation

To reduce false positives: Split-and-Merge architecture

Central controller: keep only distributed anomalies
Split-and-Merge

4 - Fine-grained characterisation through expert rules

<table>
<thead>
<tr>
<th>Classes</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>More normal packets</td>
<td>+meanSize, +stdSize</td>
</tr>
<tr>
<td>More forged packets</td>
<td>-meanSize, -stdSize</td>
</tr>
<tr>
<td>Large scan</td>
<td>-srcDivIndex, +destDivIndex, -meanSize</td>
</tr>
<tr>
<td>DDoS</td>
<td>+srcDivIndex, -destDivIndex</td>
</tr>
<tr>
<td>Botnet scan</td>
<td>+srcDivIndex, +destDivIndex, -meanSize</td>
</tr>
<tr>
<td>Botnet expansion</td>
<td>+srcDivIndex, +destDivIndex, -stdSize</td>
</tr>
<tr>
<td>Targeted scan</td>
<td>-srcDivIndex, -destDivIndex</td>
</tr>
<tr>
<td>Less botnet scan</td>
<td>-srcDivIndex, -destDivIndex, +meanSize, -stdSize</td>
</tr>
</tbody>
</table>
Evaluation on real-world traces

MAWI dataset (WIDE Project):

- **Daily files** of 15 minutes of traffic from a transpacific link
- Captured between the **MAWI network** and the upstream ISP
Evaluation (2016)

Anomaly score: number of anomalies for one port

→ Considering all subnetworks and all features

- Very low number of anomalies
- Not detected by traditional IDSs (MAWILab, ORUNADA)

Retrospective of major botnets

- Mirai (ports 23, 2323, 7547, 6789, 2222, 23231)
- Hajime (port 5358)
- Reaper (port 20480)
- Satori (ports 37215, 52869, 8000)
- ADB.Minor (port 5555)
- Memcached (port 11211)
- Wannacry (port 445)
Implementation

Local detection at the data plane enhanced by collaboration between ISPs

- **A**: data plane programming greatly easing the detection and prediction tasks
- **B**: controller aggregating high-level alerts to detect distributed attacks
- **C**: various controllers communicating using a pub/sub communication scheme
Split-and-Merge conclusion

Benefits of per-port detection:

- Focus on **port numbers**: detection of **world-wide attacks**, not seen by traditional IDS
- **Long-term** analysis: possible only when using **port numbers**
- **Cross-validation** in different subnetworks: very few **false positives**

Lightweight algorithm: ideally running at the switch-level
Novel anomaly detection and classification algorithms for IP and mobile networks

Agathe Blaise

Journée thématique du GT SSLR 2021 sur la sécurité des réseaux - 11 mai 2021