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Trusted Execution Environments (TEEs)

• Standard operating systems can not be trusted for all use cases:
• Too big and too open to provide strong security assurance

• Tens of millions of lines of operating system code
• A very open eco-system of applications

• No shielding from the computation platform provider
• No protection of “data in use” on a public cloud, no “confidential computing”, …

• Hence, many computing platforms provide some notion of “trusted 
execution environment” (TEE)
• Arm TrustZone
• Intel SGX, Intel TDX
• AMD SEV
• Many research prototypes
• …
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TEE designs and Enclaved Execution

• Many designs for TEEs exist:
• Physically separate design, like a smartcard

• Two-world design, like ARM TrustZone

• Shielded VM design, like AMD SEV and Intel TDX

• Enclaved execution design, like Intel SGX
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Attacking enclaves

• Enclaves face a very powerful attacker model: 
• both the surrounding process and the system software are attacker-controlled

• Therefore, there is a very rich literature on attack techniques
• Interface attacks

• Van Bulck et al., A tale of two worlds: Assessing the vulnerability of enclave shielding 
runtimes, ACM CCS 2019

• Microarchitectural attacks
• Side channel attacks, like cache attacks

• Transient execution attacks, like Spectre and Foreshadow

• Controlled channel attacks
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• Victim code is shielded from system software, but still relies on system software 
for resource management
• Important attack vectors: 

• Page handling

• Interrupts

Attacker
Code

Operating system

Victim
Code

Controlled-channel attacks
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Seminal paper introducing controlled channel 
attacks
• Y. Xu, W. Cui and M. Peinado, Controlled-Channel Attacks: 

Deterministic Side Channels for Untrusted Operating Systems, IEEE 
S&P 2015

• Example attack from their paper:
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Interrupts and interrupt-driven attacks

• Most processors support interrupts: a hardware mechanism to handle events 
that occur asynchronously to the current instruction stream

• Enclaves can also be interrupted, and are interrupt-unaware (but the hardware 
will save and clear registers that might contain sensitive information)

• This enables a powerful controlled channel attack, first described in:
• Jo Van Bulck, Frank Piessens, Raoul Strackx, Nemesis: Studying microarchitectural timing leaks in 

rudimentary CPU interrupt logic, ACM CCS 2018
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On embedded enclaves

• Interrupts can be timed cycle-accurately and timing is deterministic
• Hence, a deterministic controlled channel to leak information on control flow
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…

if secret {

NOP; NOP // 2 x 1 cycle

}

else {

ADD @R5+,R6 // 2 cycles

}

…

Interrupt



On cloud enclaves

• Interrupt-driven attacks seem much harder:
• Interrupts can not be scheduled cycle-accurately
• Execution time of instructions is non-deterministic and noisy

• Yet, for Intel SGX enclaves, it has been shown to be a very useful attack 
primitive
• The SGX-Step attack framework:

• https://github.com/jovanbulck/sgx-step
• Used in 30+ follow-up projects that build attacks using SGX-Step

• Attacks include:
• Interrupt latency measurements
• Interrupt counting (single-stepping)
• Side-channel measurements with high temporal resolution
• Zero stepping
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Interrupt latency attack



Interrupt counting attack

• Even if the latency signal is too noisy, just counting of instructions by 
single-stepping through frequent interrupts leaks control flow
• Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank Piessens, Berk Sunar, CopyCat: 

Controlled Instruction-Level Attacks on Enclaves, Usenix Security 2020

13



Amplification of other side-channels

• Frequently interrupting the enclave, after each step (or even multiple 
times at the same execution point – zero-stepping), makes it possible 
to do other microarchitectural side channel measurements at 
maximal temporal resolution
• Cache attacks

• Branch predictor attacks

• Power attacks

• …
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Analysis of the attack on Intel SGX

• It is surprising that interrupt-driven attacks work so well on Intel SGX
• Scheduling of interrupts is noisy

• Instruction to resume enclave after interrupt is complex with unpredictable 
execution time
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Why single-stepping works so well
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A hardware/software codesign for Intel SGX

• Intel will be rolling out a principled but probabilistic mitigation later 
this year:
• S. Constable, J. Van Bulck, X. Cheng, Y. Xiao, C. Xing, I. Alexandrovich, T. Kim, F. 

Piessens, M. Vij, M. Silberstein. AEX-Notify: Thwarting Precise Single-
Stepping Attacks through Interrupt Awareness for Intel SGX Enclaves, Usenix
Security 2023

• Objectives of the mitigation:
• Obfuscated forward progress: no (reliable) single-stepping

• Never increase the amount of information leaked

• In addition, it must be compatible with existing software and practical
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The key idea of the mitigation

• On the hardware side: the AEX-Notify ISA extension
• Allows an enclave to “opt in” to (guaranteed) interrupt notifications

• After an interrupt, before resuming, the enclave can run an interrupt handler

• On the software side: a software handler that minimizes execution 
time of the first enclave instruction

20



Responsibilities of the handler

• Determine what the next instruction is
• Implemented as a constant-time instruction disassembler

• Verify page-table permissions

• Atomically prefetch the working set of the next instruction

• Randomly insert a small delay with 50% probability
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Evaluation of effectiveness

NOTE: attacks require several consecutive single-step successes!
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Full mitigation on embedded processors

• Instruction execution time is deterministic, and attacker can schedule interrupts 
cycle-accurately

• But no other software-exploitable side-channels are available

• IDEA: can we pad interrupt handling time?
• Not secure! Attacker can measure:

• Interrupt latency time

• “Resume-to-end” time

• Maximal number of interrupts (interrupt counting)
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A provably secure design

• Busi et al. “Provably secure isolation for interruptible enclaved 
execution on small microprocessors” (IEEE CSF 2020) proposes:
• Pre- and post-padding during interrupt handling such that:

• Interrupt latency is constant (T)

• Resume-to-end-time does not change on interrupt

I I’

Interrupt service 
routine runs here

Legend:

: enclave instruction

: padding

T
T
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Conclusions

• Interrupt-driven attacks are a powerful class of attacks against 
enclaved execution
• See: https://github.com/jovanbulck/sgx-step

• Attacks and defenses look different for low-end or high-end 
microprocessors

• Intel is rolling out a hardware-software co-designed mitigation that 
successfully thwarts single-stepping through interrupts
• The hardware part (AEX-Notify ISA extension) makes enclaves interrupt 

aware, and can be used for other mitigations
• The software part provides an ingenious interrupt handler that atomically 

prefetches the working set of the next enclave instruction
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