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Trusted Execution Environments (TEEs)

e Standard operating systems can not be trusted for all use cases:

* Too big and too open to provide strong security assurance
* Tens of millions of lines of operating system code
* A very open eco-system of applications

* No shielding from the computation platform provider
* No protection of “data in use” on a public cloud, no “confidential computing”, ...

* Hence, many computing latforms provide some notion of “trusted
execution environment FTEE)

* Arm TrustZone

Intel SGX, Intel TDX

AMD SEV

Many research prototypes



TEE designs and Enclaved Execution

* Many designs for TEEs exist:
* Physically separate design, like a smartcard

* Two-world design, like ARM TrustZone
e Shielded VM design, like AMD SEV and Intel TDX
* Enclaved execution design, like Intel SGX

Enclave
Process 1 Process 2 Process 3

Operating System

Hardware




Attacking enclaves

* Enclaves face a very powerful attacker model:
* both the surrounding process and the system software are attacker-controlled

* Therefore, there is a very rich literature on attack techniques

e |nterface attacks

e Van Bulck et al., A tale of two worlds: Assessing the vulnerability of enclave shielding
runtimes, ACM CCS 2019

* Microarchitectural attacks
* Side channel attacks, like cache attacks
* Transient execution attacks, like Spectre and Foreshadow

e Controlled channel attacks



Controlled-channel attacks

* Victim code is shielded from system software, but still relies on system software
for resource management
* Important attack vectors:

e Page handling
* Interrupts

Attacker
Code

Victim
“ Code

‘ Syscall interface

Manages virtual memory, handles
interrupts, ...

Operating system



Seminal paper introducing controlled channel
attacks

* Y. Xu, W. Cui and M. Peinado, Controlled-Channel Attacks:
Deterministic Side Channels for Untrusted Operating Systems, |EEE
S&P 2015

* Example attack from their paper:

Original Recovered
&

Fig. 11: A small sample of the images we used to test the libjpeg
attack.
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Interrupts and interrupt-driven attacks

* Most processors support interrupts: a hardware mechanism to handle events
that occur asynchronously to the current instruction stream

* Enclaves can also be interrupted, and are interrupt-unaware (but the hardware
will save and clear registers that might contain sensitive information)

* This enables a powerful controlled channel attack, first described in:

* Jo Van Bulck, Frank Piessens, Raoul Strackx, Nemesis: Studying microarchitectural timing leaks in
rudimentary CPU interrupt logic, ACM CCS 2018

| Fetch | >| Decode ' Execute

(PC = IDT[irq] )<—(Secure IRQ logzc




On embedded enclaves

* Interrupts can be timed cycle-accurately and timing is deterministic
* Hence, a deterministic controlled channel to leak information on control flow

Interrupt
CLK f ] | | J J E— lf secret {
CMD % NOP X IRQ Iogic X ISR }NOP; NOP // 2 x 1 cycle
IRQ _/ \ ei‘-;; (gR5+,R6 // 2 cycles
cMp 77 ADD X__1RQlogic ISR '




On cloud enclaves

* Interrupt-driven attacks seem much harder:
* Interrupts can not be scheduled cycle-accurately
* Execution time of instructions is non-deterministic and noisy

* Yet, for Intel SGX enclaves, it has been shown to be a very useful attack
primitive

* The SGX-Step attack framework:
* https://github.com/jovanbulck/sgx-step
* Used in 30+ follow-up projects that build attacks using SGX-Step

 Attacks include:
* Interrupt latency measurements
* Interrupt counting (single-stepping)
* Side-channel measurements with high temporal resolution
* Zero stepping



https://github.com/jovanbulck/sgx-step

Interrupt latency attack
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(c) Increased IRQ latencies from enclaved data cache misses.
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(d) Increased IRQ latencies from unprotected PTE data cache misses.

input operands, (c) enclave private memory caching conditions, and (d) untrusted address translation data cache misses.

Figure 6: SGX microbenchmarks: IRQ latency distribution timing variability based on (a) enclaved instruction type, (b) secret



Interrupt counting attack

* Even if the latency signal is too noisy, just counting of instructions by

single-stepping through frequent interrupts leaks control flow

* Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank Piessens, Berk Sunar, CopyCat:
Controlled Instruction-Level Attacks on Enclaves, Usenix Security 2020

if (c == 0){ r = add(r, d); } else { r = add(r, s); }

Stack §
test %eax, %eax c=0 o Code P,
Je 1f | Code Py
mov %edx, $esi test/je  call

1: 1 — Stack §
call add €= I\»— Code P,
. ® Code Py

mov %eax, -0xc(3rbp)




Amplification of other side-channels

* Frequently interrupting the enclave, after each step (or even multiple
times at the same execution point — zero-stepping), makes it possible
to do other microarchitectural side channel measurements at
maximal temporal resolution

* Cache attacks
e Branch predictor attacks
* Power attacks
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Analysis of the attack on Intel SGX

* It is surprising that interrupt-driven attacks work so well on Intel SGX
e Scheduling of interrupts is noisy

* Instruction to resume enclave after interrupt is complex with unpredictable
execution time

0 100 200 300 400 500 600 700 800 900
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Why single-stepping works so well
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A hardware/software codesign for Intel SGX

* Intel will be rolling out a principled but probabilistic mitigation later
this year:

* S. Constable, J. Van Bulck, X. Cheng, Y. Xiao, C. Xing, |. Alexandrovich, T. Kim, F.
Piessens, M. Vij, M. Silberstein. AEX-Notify: Thwarting Precise Single-

Stepping Attacks through Interrupt Awareness for Intel SGX Enclaves, Usenix
Security 2023

* Objectives of the mitigation:
e Obfuscated forward progress: no (reliable) single-stepping

* Never increase the amount of information leaked
* |n addition, it must be compatible with existing software and practical



The key idea of the mitigation

* On the hardware side: the AEX-Notify ISA extension

» Allows an enclave to “opt in” to (guaranteed) interrupt notifications
e After an interrupt, before resuming, the enclave can run an interrupt handler

* On the software side: a software handler that minimizes execution
time of the first enclave instruction

Clear A-bits Interrupt Lands?

Arm APIC 11
Timer Executes
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Responsibilities of the handler

* Determine what the next instruction is
* Implemented as a constant-time instruction disassembler

* Verify page-table permissions
e Atomically prefetch the working set of the next instruction
 Randomly insert a small delay with 50% probability
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Evaluation of effectiveness

Table 1: Single-stepping success rates for different stimuli.

Adversary Action(s) Single-Step Hit Rate
None 0.042
Clear PTE A-bit 0.107
L1 contention (page/set) 0.118/0.112
L2 contention (page/different set/matching set) 0.114/0.126/0.223
L3 contention (same/separate/all cores) 0.141/0.030/0.104

NOTE: attacks require several consecutive single-step successes!
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Full mitigation on embedded processors

* |nstruction execution time is deterministic, and attacker can schedule interrupts
cycle-accurately

* But no other software-exploitable side-channels are available

* IDEA: can we pad interrupt handling time?

* Not secure! Attacker can measure:

* Interrupt latency time
* “Resume-to-end” time
* Maximal number of interrupts (interrupt counting)

X
L[]




A provably secure design

* Busi et al. “Provably secure isolation for interruptible enclaved
execution on small microprocessors” (IEEE CSF 2020) proposes:

* Pre- and post-padding during interrupt handling such that:
* Interrupt latency is constant (T)
* Resume-to-end-time does not change on interrupt

tq
« T .
< > T

Aty At, Aty

Interrupt service [ ] :enclave instruction

Legend:
routine runs here 7 - padding

»
»
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Conclusions

* Interrupt-driven attacks are a powerful class of attacks against
enclaved execution
e See: https://github.com/jovanbulck/sgx-step

* Attacks and defenses look different for low-end or high-end
MICroprocessors

* Intel is rolling out a hardware-software co-designed mitigation that
successfully thwarts single-stepping through interrupts

* The hardware part (AEX-Notify ISA extension) makes enclaves interrupt
aware, and can be used for other mitigations

* The software part provides an ingenious interrupt handler that atomically
prefetches the working set of the next enclave instruction



https://github.com/jovanbulck/sgx-step
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