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TrustInSoft

Company founded in 2013 by former researchers of the CEA.

Fabrice Derepas Benjamin Monate Pascal Cuoq

Company’s goal: commercialize a tool that provides mathematical guarantees on C and C++
programs: TrustInSoft Analyzer.

Company activity: 80 % tool licenses, 20 % service.
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The need for secure communications

Multiple parameters are involved to ensure privacy:

the cryptographic algorithm
the communication protocol
the protocol/algorithm implementations
...

TrustInSoft Analyzer’s goal
Guarantee the absence of bugs in the implementations of these protocols and algorithms.
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A first exemple of bug: Heartbleed

Heartbleed is a security vulnerability in OpenSSL.

It affects the TLS heartbeat extension.

Introduced in 2012 and reported in 2014. The vulnerability
existed for more than 2 years in the OpenSSL
implementation.

→ CVE-2014-0160

The faulty line:

memcpy(bp, pl, payload);

pl is a pointer not necessary valid on payload bytes. It can
result in buffer overflow and an attacker can read more data
than it should.
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Undefined behaviors

The heartbleed vulnerability exploits an Undefined Behavior.

“Undefined Behaviors” is the name for list of behaviors that are proscribed by the C norm and
whose result is unpredictable.

Example

“The value of a pointer to an object whose lifetime has ended is used”.
“If the quotient a/b is not representable, the behavior of both a/b and a%b”

Guillaume Cluzel (TrustInSoft) – 5 – Exploits generation using formal methods



Detect undefined behaviors

TrustInSoft Analyzer uses a plugin called Value to capture all the undefined behaviors.

Based on abstract interpretation to execute a program with additional checks.

int t[10];

void setter(int i) {
t[i] = 42;

}

int main() {
setter(5);
setter(tis_interval(8, 14));

}
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Abstract interpretation I

Abstract interpretation is a technique to execute programs with abstract values.

Figure – Testing a two variables program with
unit tests.

Figure – Analyzing a program with abstract
interpretation. The values of the variables are
all the values in the square.

⇒ Pascal Cuoq and Raphaël Rieu-Helft. “Result graphs for an abstract interpretation-based static analyzer”.
In: 28èmes Journées Francophones des Langages Applicatifs. 2017.
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Abstract interpretation II

The idea behind abstract interpretation is to have a correspondance between a concrete
lattice (D,⊆) and an abstract lattice (D],⊆]) that over-approximates the concrete lattice and
has “good properties”.

There are non-relational abstract domains that only keep an abstract value for each
variable.

Example: lattice of signs, intervals, …
relational abstract domains that keep relations between the program variables.

Example: Octogons, polyhedra, …

Intervals Octogons Polyhedra
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TrustInSoft choices

TrustInSoft analyzer uses intervals to represent the values of the variables because:
It makes the analysis faster than with relational domains on huge code bases (+100K
LOC).
The results are easily understandable for a C programmer.
Configuring an analysis is rather easy to have almost no false positive and eliminate all
the UBs.

Successes
mbed TLS is immune to certain types of Common Weaknesses Enumerations. It ensures
the absence of Heartbleed-like errors if deployed accordingly to the Secure Deployment
Guide.
Used by highly-renowned industrial actors like Thales, Safran, Mitsubishi, Sony Interactive
Entertainment.
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Is it enough?

NO...

What if the code does not contain any UB but still it does not do what it is supposed to do?

It can still be considered as a bug, even if it does not result in a runtime failure.
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Functional specifications

To overcome this problem, it is possible to add functional specifications to C functions. These
annotations can be:

Logic specifications: predicates, logic functions, etc.
Function contracts as pre- and postconditions.
Assertions in the source code.
Loop invariants.

Specification language
The language used to write these specifications is ACSL (ANSI/ISO C Specification
Language).

Guillaume Cluzel (TrustInSoft) – 11 – Exploits generation using formal methods



An example of function specification: abs

The abs() function computes the absolute value of the integer argument v.

int abs(int v) {
int tmp;
if (v >= 0) tmp = v;
else tmp = -v;
return tmp;

}
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An example of function specification: abs

The abs() function computes the absolute value of the integer argument v.

/*@
ensures

\result == ((v >= 0) ? v : -v);
*/
int abs(int v) {

int tmp;
if (v >= 0) tmp = v;
else tmp = -v;
return tmp;

}

The ensures keyword expresses the
post-condition of the function.
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An example of function specification: abs

The abs() function computes the absolute value of the integer argument v.

/*@
requires v != INT_MIN;
ensures

\result == ((v >= 0) ? v : -v);
*/
int abs(int v) {

int tmp;
if (v >= 0) tmp = v;
else tmp = -v;
return tmp;

}

The requires keyword specifies the
acceptable values at the entry of the
function, i.e. a property that must be
true when the function is called.

The ensures keyword expresses the
post-condition of the function.
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An example of function specification: abs

The abs() function computes the absolute value of the integer argument v.

/*@ requires v != INT_MIN;
behavior positive:

assumes v >= 0;
ensures \result == v;

behavior negative:
assumes v < 0;
ensures \result == -v; */

int abs(int v) {
int tmp;
if (v >= 0) tmp = v;
else tmp = -v;
return tmp;

}

The behaviors can be used to im-
prove the readability of a contract
when the function changes its behav-
ior depending of its input.
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Weakest precondition calculus

Definition (Hoare Triple)
A Hoare Triple is a triple denoted {P}s{Q} where P and Q are logic propositions and s is a
statement. P is called the precondition and Q the postcondition.

The Value plugin is able to prove functional specifications. But only the most simple ones.

The notion of weakest precondition (WP) calculus was originally proposed by Dijkstra.
It is able to reduce the problem of proving that a triple {P}s{Q} that is derivable using the
classical Hoare logical rules to the proof of a mathematical formula.
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Functional proofs in the industry

Tools implementing the WP calculus have already been successfully used:
Methode B (Atelier B)
SPARK (Ada)
Frama-C and its WP plugin (C)
Why3 (WhyML and used as a library for other languages)
Dafny
KeY (Java)
....

... but mainly by formal methods experts.

The goal is to overcome the limitations encountered by WP and make program proofs
accessible to as many C developers as possible.

Guillaume Cluzel (TrustInSoft) – 14 – Exploits generation using formal methods



Functional proofs in the industry

Tools implementing the WP calculus have already been successfully used:
Methode B (Atelier B)
SPARK (Ada)
Frama-C and its WP plugin (C)
Why3 (WhyML and used as a library for other languages)
Dafny
KeY (Java)
....

... but mainly by formal methods experts.

The goal is to overcome the limitations encountered by WP and make program proofs
accessible to as many C developers as possible.

Guillaume Cluzel (TrustInSoft) – 14 – Exploits generation using formal methods



The J³ plugin

Thanks to the past experiences, we collaborate on a new plugin called J³ with the Inria
TOCCATA Team.

We closely work with
Claude Marché.

This plugin is based on Why3.

It should handle low-level code.

Give the most precise feedbacks.

Especially, we want to generate counterexamples
when a goal is not proven, and explain the
counterexamples.
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How J³ works

1 Parsing
The C code is parsed by
the Kernel to produce an
intermediate AST.

2 Translation
J³ transforms the C AST
and the program annota-
tions to a Why3 AST.

3 WP calculus
Why3 generates the veri-
fication conditions for the
generated AST.

4 SMT solvers
SMT solvers try to answer
whether the VC is valid or
not.

5 Prover results
The results of the provers
are parsed by Why3 to col-
lect as much information
as possible.

6 Result
J³ outputs understandable
results for a C developer.
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Retrieve information from the provers

An assertion in the code can be either proven or not.

For a non proven goal:

The provers can suggest a model.

The model can be seen as a counterexample for the property we are trying to prove in
the C code.

⇒ The work presented in the next slides is still a work in progress.

Guillaume Cluzel (TrustInSoft) – 17 – Exploits generation using formal methods



The need for counterexamples

There are many reasons why the
specification cannot be proven:

The specification can be too hard to
prove for the SMT solvers
The specification can be too weak to
prove the goals
The specification can be wrong
The code can be wrong
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The need for counterexamples

There are many reasons why the
specification cannot be proven:

The specification can be too hard to
prove for the SMT solvers

The specification can be too weak to
prove the goals
The specification can be wrong
The code can be wrong

/*@ requires \abs(x) <= 1.0;
ensures

\abs(\result - \exp(x)) <= 0x1p-4; */
float exp() {

return
0x1.fa62ffd643d6ep -1 +
0x1.2158a22d91de9p+0 * x +
0x1.1babaa64d94dbp -1 * x * x;

}
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There are many reasons why the
specification cannot be proven:

The specification can be too hard to
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return
0x1.fa62ffd643d6ep -1 +
0x1.2158a22d91de9p+0 * x +
0x1.1babaa64d94dbp -1 * x * x;

}

Counterexamples cannot help as the specification is correct.
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The need for counterexamples

There are many reasons why the
specification cannot be proven:

The specification can be too hard to
prove for the SMT solvers
The specification can be too weak to
prove the goals

The specification can be wrong
The code can be wrong

/*@ ensures \result >= 0; */
int two() { return 2; }

void foo() {
int x = two();
/*@ assert x == 2; */

}
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There are many reasons why the
specification cannot be proven:

The specification can be too hard to
prove for the SMT solvers
The specification can be too weak to
prove the goals

The specification can be wrong
The code can be wrong

/*@ ensures \result >= 0; */ // result = 0;
int two() { return 2; }

void foo() {
int x = two(); // x = 0;
/*@ assert x == 2; */ // x = 0;

}

The counterexample can be exploited to show that the specification of foo is too weak.
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The need for counterexamples

There are many reasons why the
specification cannot be proven:

The specification can be too hard to
prove for the SMT solvers
The specification can be too weak to
prove the goals
The specification can be wrong
The code can be wrong

/*@ requires -20 <= x <= 40;
ensures \result >= 0 */

int foo(int x) {
return x;

}
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The need for counterexamples

There are many reasons why the
specification cannot be proven:

The specification can be too hard to
prove for the SMT solvers
The specification can be too weak to
prove the goals
The specification can be wrong
The code can be wrong

/*@ requires -20 <= x <= 40; // x = -3;
ensures \result >= 0 */ // result = -3;

int foo(int x) { // x = -3;
return x; // x = -3;

}

The counterexample can be seen as an exploit. Indeed, the counterexample shows how to
exploit a defect of the code. Security teams can exploit them to evaluate the severity of a

bug.
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Checking the counterexamples

The main problem with counterexamples is that they can be wrong… And showing to a user a
wrong counterexamples is more confusing than not showing anything. It is necessary to discard
the wrong counterexamples.

One solution consists in checking the counterexample with “giant-steps execution”

Giant-steps-execution
At each program point, the intermediate assertions and the function contracts of the functions
that are called are checked with the values given by the counterexample.
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The giant-steps execution

We want to check if the counterexample is correct for the assertion
/*@ ensures \result >= 0; */ // result = 0;
int two() { return 2; }

void foo() {
int x = two(); // x = 0;
/*@ assert x == 2; */ // x = 0;

}

The counterexample is good as it does not respect the final assertion but it respects all the
intermediate assertions.
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The giant-steps execution

We want to check if the counterexample is correct for the assertion
/*@ ensures \result >= 0; */ // result = 0; → The assertion evaluates to True
int two() { return 2; }

void foo() {
int x = two(); // x = 0; → The assertion evaluates to True
/*@ assert x == 2; */ // x = 0; → The assertion evaluates to False

}

The counterexample is good as it does not respect the final assertion but it respects all the
intermediate assertions.
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Classification of the counterexamples

In addition, it is possible to get even more feedback from the counterexample. We can get a
classification of the counterexample by completing the giant-step execution with a
concrete execution.

BadCE One of the two did not go well. The counterexample is bad.
GoodCE The two executions went well.

Subcontract weakness A subcontract of a function or a loop invariant is too weak to prove a
property.

⇒ Benedikt Becker, Cláudio Belo Lourenço, and Claude Marché. “Explaining Counterexamples with
Giant-Step Assertion Checking”. In: 6th Workshop on Formal Integrated Development Environments
(F-IDE 2021). Ed. by José Creissac Campos and Andrei Paskevich. Electronic Proceedings in Theoretical
Computer Science. May 2021.
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Concrete execution

We want to check if the counterexample is correct for the assertion with a concrete execution
/*@ ensures \result >= 0; */ // result = 2;
int two() { return 2; }

void foo() {
int x = two(); // x = 2;
/*@ assert x == 2; */ // x = 2;

}

The assertion can be proved with the values computed by the concrete execution.

The automatic system classifies it as a subcontract weakness.
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Mixing the proof techniques

Some future research focus.
1. Large analysis campaigns can be run with Value (abstract interpretation plugin).
2. When an undefined behavior is detected:

It can be a real bug.
We want to be able to generate an exploit thanks to the J³ plugin
It can be a false positive due to imprecision of Value.
We want to be able to remove the alarm.

It requires to find a way to automatically generate pre-, postconditions and loop invariants.
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Conclusion

Using counterexamples is a promising way to provide feedback to the user by:
Generating exploits and counterexamples.
Providing additional information to help the user to prove their code.

This technique deserves to be more widely used, in particular in addition to other verification
techniques.
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