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Authentication of biometric templates
What is a biometric template ?
In this talk, a biometric template b is considered as a set of elements
in F2 = {0, 1} of fixed length n and the distance used for comparison
of two templates is the Hamming distance dH .

This assumption is not really restrictive : there exists binarization
systems for many modalities as for iris, speaker or face recognition.

Authentication of a fresh template
The reference template b, acquired during enrolment, and the fresh
template b′ are compared with a threshold τ :
If dH(b, b′) ≤ τ , the authentication is successfull.

Encryption ? If the reference template is encrypted, it should be
decrypted for comparison with the fresh template.
=⇒ Templates are not protected during the verification.
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Errors correcting codes

Definition of a (block) code and minimum distance
A (n,K , d)-code is a subset of K elements of Fn

2 such that the
Hamming distance between two elements is ≥ d .
In this case, d is called the minimum distance of the code.

Minimum distance decoding
1. A codeword c is transmitted on a noisy channel and is

recovered as x = c ⊕ e ∈ (F2)n, where e is an error.
2. x is decoded into c, or an other codeword c ′ or FAILURE,

depending if the Hamming weight wH(e) of e is small or large.

If wH(e) is small, there are no other codewords close to x .
Else, x can be close to c ′ or far from any codewords.

Consequence : a (n,K , 2t + 1) code can correct t errors.
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Fuzzy commitments (Juels and Wattenberg, 1999)

Enrolment
Let C be a (n,K , d) binary code with d = 2t + 1. The user sends
P = c⊕b and H(c) to the server, where b is the reference template,
H is a hash function and c ∈ C is a random secret codeword.

Authentication
The user sends his fresh template b′ to the server, which computes
P ⊕ b′. The server decodes it in a codeword c ′ (or FAILURE) and
controls if c = c ′ by verifying H(c) = H(c ′).

The threshold of comparison is related to the distance of the
code : b′ is accepted if and only if dH(b, b′) ≤ t.

A key binding scheme : A secret key K ∈ {0, 1}k is encoded in a
codeword c, masked with b and recovered with b′ if dH(b, b′) ≤ t.
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Implementation of fuzzy commitments

The choice of the code strongly depends on the performance of the
biometric data (intraclass and interclass rates) :
Linear codes used in fuzzy commitments
I Daugman et al. (2005), Rathgeb and Uhl (2009) : Reed

Solomon and Hadamard Codes.
I Yang and Verbauwhede (2007), Maiorana and Campisi

(2010), Bajaber et al. (2022) : BCH codes only.
I Bringer et al. (2007) : Reed-Mullers codes RM(1, m).

Two types of implementation are considered :
1. A code with length equal to the length of the template.
2. A combination of two codes.

Without loss of generalities, we consider in this talk the second one
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Attack in undistinguishability (Simoens et al., 2009)

Let C be a [n, k, 2t + 1] linear binary code, with c1, c2 ∈ C .
The attacker possesses b1 ⊕ c1,H(c1) and b2 ⊕ c2, H(c2).
Is it possible to know if the biometric templates b1 and b2 come
from the same person or not ?

Description of the attack
The attacker computes b1 ⊕ b2 ⊕ c1 ⊕ c2 = e ⊕ c1 ⊕ c2.
1. If dH(b1, b2) = e ≤ t, then e ⊕ c1 ⊕ c2 is decodable.
2. If dH(b1, b2) = e > t, then e ⊕ c1 ⊕ c2 is decodable or not.

If e ⊕ c1 ⊕ c2 is decodable, the attacker cannot conclude (because
H(c2⊕c2) is unknown). Nevertheless, if e⊕c1⊕c2 is not decodable,
then the attacker can conclude that dH(b1, b2) = e > t.

A linear code with an high minimum distance is vulnerable.
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Consequence on the attack in undistinguishability

A non linear code as solution ?
The previous attacks works because c1 ⊕ c2 is a codeword, due to
the linearity of the code. Could we use a non linear code ?

First problem
In a non linear code C the properties ∀c1, c2 ∈ C , c1 ⊕ c2 ∈ C is
false, but it does not garanties that it doesn’t exist some c1 and
c2 ∈ C such that c1 ⊕ c2 ∈ C .

Second problem
Even if c1 ⊕ c2 is not in C , if wH(c1 ⊕ c2) is low, the attack could
be again successfull.
The attack is not possible if dH(c1 ⊕ c2,C) ≥ t = b(d − 1)/2c.
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Non-linearity of random codes

Figure – Distance and non-linearity of [64, 4096] random codes

8/15



Non-linearity distribution

Non-linearity distribution
Let C be a (n,K , d) code. The non-linearity distribution D =
(D0 . . . ,Dn) of the code C is defined by

Di = 1
K ]{(c1, c2) ∈ C | dH(c1 ⊕ c2,C) = i},

where dH(c1 ⊕ c2,C) = minc∈C dH(c1 ⊕ c2, c).

Problem : decoding algorithms of random codes are not efficient.

Kerdock codes as solution ?
Kerdock codes are non linear codes which have an efficient decoding
algorithm. Whats about their non linearity distribution ?
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Boolean functions

Definition of Boolean functions and ANF
A Boolean function with n variables is a map from (F2)n to F2. It
is defined either by a truth table or by a multivariate polynomial
(called ANF) in the set F2[x1, . . . xn]/(x2

1 + x1, . . . , x2
n + xn).

Example : let f : (F2)3 → F2 defined by the ANF f (x1, x2, x3) =
x1x2 + x2x3 + x3. The truth table is 11100010 because
f (0, 0, 0) = 0, f (0, 0, 1) = 1, f (0, 1, 0) = 0, f (0, 1, 1) = 0, ...

Definition of bent functions
A Boolean function f with m variables is bent if and only if m is
even and if the Hamming distance between f and linear functions is
2m−1 − 2m

2 −1 or 2m−1 + 2m
2 −1
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Construction of Kerdock codes

Definition : RM(1,m) is the set of linear Boolean functions and
RM(2,m) is the set of linear or quadratic Boolean functions.

Kerdock Set
Let N = 2m−1−1 and f1, . . . , fN be quadratic bent functions with m
variables, such that the sum of any pair of functions fi ⊕ fj is bent.
Then the set {f1, . . . , fN} is called a Kerdock set.

Kerdock code
The Kerdock code K (m), with m even, is the subcode of RM(2,m)
defined by RM(1,m) ∪ (f1 ⊕ RM(1,m)) ∪ . . . ∪ (fN ⊕ RM(1,m)).

K (m) is a (2m, 22m, 2m−1 − 2m
2 −1) nonlinear code, with parameters

close to the linear Hadamard code or RM(1,m).
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Non linearity distribution of Kerdock codes
Let m be an even number and the Kerdock set {f1, . . . , f2m−1−1},
of 2m−1 − 1 bent functions, defining the Kerdock code K (m).

Theorem
The nonlinearity distribution of the Kerdock code is given by
D0, . . . ,DK where all coefficients between D1 and D2m−2−1 are null.
Moreover if the sum of two bent functions of the Kerdock set is
not in the Kerdock set, then we have D0 = 2m+1 + 2m+2 − 8 and∑

i≥2m−2 Di = (2m − 2)(2m − 4).

Interpretation
D0 comes mainly from the linear subcode RM(1,m). But 2m−2 is
greater than the error-correcting capacity of the code !
D0 is asymptotically negligeable compared to

∑
i≥2m−2 Di .
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Application to the (16, 64) code K (4)
There exist 28 cosets fi ⊕ RM(1, 4) in RM(2, 4), where fi are
quadratic bent functions with 4 variables (without linear part).

Let G(4) be the graphe composed of 28 vertices fi , where an edge
between two vertices fi and fj means that fi ⊕ fj is bent.

An exhaustive search of cliques in this graphe provides a lot of
cliques of order 3 and 8 cliques of order 7 :
I Cliques of order 3 are just composed by (fi , fj , fi ⊕ fj)
I Each cliques of order 7 provide a Kerdock set (of cardinal 7 =

24−1 − 1) for Kerdock codes K (4), verifying in all cases the
distribution D0 = 88 and D4 = 168.

Interpretation
The previous theorem is incomplete, the non linearity distribution of
all K (4) has only two weights !
For K (6) we also have D0 = 374 and D16 = 3720.
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Linear construction (Hammons et al., 1992)
A Kerdock code can be seen as an image of a cyclic (linear) code on
Z4, by the Gray map : Z4 → F2

2. This cyclicity provides an efficient
encoding/decoding procedure, based on LFSR on Z4.

It is not exactly the same Kerdock code than previously (for
example codewords are not necessary quadratic).

Experiments
Our experiments on K (4) and K (6), constructed from these Z4 linear
codes, provide the same nonlinearity distribution.

Parameters and numerical results :
H(6) and RM(1, 6) are (64, 128, 32) code, whereas K (6) is a
(64, 4096, 28) code.
Success probability by block : pH(6) ' 0.998 by block for H(6)
and RM(1, 6) against pK(6) ' 0.09 by block for K (6).
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Conclusion

Parameters similar to linear codes.
Parameters of K (m) are close to Hadamard codes H(m) or Reed
Muller RM(1,m), used in fuzzy commitment schemes.

Resistance against undistinguishability.
Kerdock codes provide a good resistance against attacks in undis-
tinguishability, due to their non linearity distribution.

Efficiency of the construction.
The construction of Hammons et al. provides an efficient decoding
procedure, as for any cyclic linear codes.

Thank you ! Questions ?
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