Nonlinear Fuzzy Commitments with Kerdock Codes

Patrick Lacharme Journées du GDR Securité 26 Juin 2023

1/15

Errors correcting codes

Definition of a (block) code and minimum distance

A (n, K, d)-code is a subset of K elements of \mathbf{F}_2^n such that the Hamming distance between two elements is $\geq d$. In this case, d is called the minimum distance of the code.

Minimum distance decoding

- 1. A codeword *c* is transmitted on a noisy channel and is recovered as $x = c \oplus e \in (\mathbf{F}_2)^n$, where *e* is an error.
- 2. x is decoded into c, or an other codeword c' or FAILURE, depending if the Hamming weight $w_H(e)$ of e is small or large.

If $w_H(e)$ is small, there are no other codewords close to x. Else, x can be close to c' or far from any codewords.

Consequence : a (n, K, 2t + 1) code can correct *t* errors.

Authentication of biometric templates

What is a biometric template?

In this talk, a biometric template *b* is considered as a set of elements in $\mathbf{F}_2 = \{0, 1\}$ of fixed length *n* and the distance used for comparison of two templates is the Hamming distance d_H .

This assumption is not really restrictive : there exists binarization systems for many modalities as for iris, speaker or face recognition.

Authentication of a fresh template

The reference template b, acquired during enrolment, and the fresh template b' are compared with a threshold τ :

If $d_H(b, b') \leq \tau$, the authentication is successfull.

Encryption ? If the reference template is encrypted, it should be decrypted for comparison with the fresh template.

 \Longrightarrow Templates are not protected during the verification.

Fuzzy commitments (Juels and Wattenberg, 1999)

Enrolment

Let C be a (n, K, d) binary code with d = 2t + 1. The user sends $P = c \oplus b$ and H(c) to the server, where b is the reference template, H is a hash function and $c \in C$ is a random secret codeword.

Authentication

The user sends his fresh template b' to the server, which computes $P \oplus b'$. The server decodes it in a codeword c' (or FAILURE) and controls if c = c' by verifying H(c) = H(c').

The threshold of comparison is related to the distance of the code : b' is accepted if and only if $d_H(b, b') \leq t$.

A key binding scheme : A secret key $K \in \{0,1\}^k$ is encoded in a codeword c, masked with b and recovered with b' if $d_H(b,b') \leq t$.

Implementation of fuzzy commitments

The choice of the code strongly depends on the performance of the biometric data (intraclass and interclass rates) :

Linear codes used in fuzzy commitments

- Daugman et al. (2005), Rathgeb and Uhl (2009) : Reed Solomon and Hadamard Codes.
- Yang and Verbauwhede (2007), Maiorana and Campisi (2010), Bajaber *et al.* (2022) : BCH codes only.
- ▶ Bringer *et al.* (2007) : Reed-Mullers codes RM(1, m).

Two types of implementation are considered :

- 1. A code with length equal to the length of the template.
- 2. A combination of two codes.

Without loss of generalities, we consider in this talk the second one

5/15

Consequence on the attack in undistinguishability

A non linear code as solution?

The previous attacks works because $c_1 \oplus c_2$ is a codeword, due to the linearity of the code. Could we use a non linear code?

First problem

In a non linear code C the properties $\forall c_1, c_2 \in C, c_1 \oplus c_2 \in C$ is false, but it does not garanties that it doesn't exist some c_1 and $c_2 \in C$ such that $c_1 \oplus c_2 \in C$.

Second problem

Even if $c_1 \oplus c_2$ is not in C, if $w_H(c_1 \oplus c_2)$ is low, the attack could be again successfull.

The attack is not possible if $d_H(c_1 \oplus c_2, C) \ge t = \lfloor (d-1)/2 \rfloor$.

Attack in undistinguishability (Simoens et al., 2009)

Let C be a [n, k, 2t + 1] linear binary code, with $c_1, c_2 \in C$. The attacker possesses $b_1 \oplus c_1, H(c_1)$ and $b_2 \oplus c_2, H(c_2)$. Is it possible to know if the biometric templates b_1 and b_2 come from the same person or not?

Description of the attack

The attacker computes $b_1 \oplus b_2 \oplus c_1 \oplus c_2 = e \oplus c_1 \oplus c_2$.

- 1. If $d_H(b_1, b_2) = e \le t$, then $e \oplus c_1 \oplus c_2$ is decodable.
- 2. If $d_H(b_1, b_2) = e > t$, then $e \oplus c_1 \oplus c_2$ is decodable or not.

If $e \oplus c_1 \oplus c_2$ is decodable, the attacker cannot conclude (because $H(c_2 \oplus c_2)$ is unknown). Nevertheless, if $e \oplus c_1 \oplus c_2$ is not decodable, then the attacker can conclude that $d_H(b_1, b_2) = e > t$.

A linear code with an high minimum distance is vulnerable.

Non-linearity of random codes

FIGURE - Distance and non-linearity of [64, 4096] random codes

6/15

Non-linearity distribution

Non-linearity distribution

Let C be a (n, K, d) code. The non-linearity distribution $D = (D_0 \dots, D_n)$ of the code C is defined by

$$D_i = \frac{1}{\kappa} \sharp\{(c_1, c_2) \in C \mid d_H(c_1 \oplus c_2, C) = i\},\$$

where $d_H(c_1 \oplus c_2, C) = \min_{c \in C} d_H(c_1 \oplus c_2, c)$.

Problem : decoding algorithms of random codes are not efficient.

Kerdock codes as solution?

Kerdock codes are non linear codes which have an efficient decoding algorithm. Whats about their non linearity distribution?

9/15

Construction of Kerdock codes

Definition : RM(1, m) is the set of linear Boolean functions and RM(2, m) is the set of linear or quadratic Boolean functions.

Kerdock Set

Let $N = 2^{m-1} - 1$ and f_1, \ldots, f_N be quadratic bent functions with m variables, such that the sum of any pair of functions $f_i \oplus f_j$ is bent. Then the set $\{f_1, \ldots, f_N\}$ is called a *Kerdock set*.

Kerdock code

The Kerdock code K(m), with m even, is the subcode of RM(2, m) defined by $RM(1, m) \cup (f_1 \oplus RM(1, m)) \cup \ldots \cup (f_N \oplus RM(1, m))$.

K(m) is a $(2^m, 2^{2m}, 2^{m-1} - 2^{\frac{m}{2}-1})$ nonlinear code, with parameters close to the linear Hadamard code or RM(1,m).

Boolean functions

Definition of Boolean functions and ANF

A Boolean function with *n* variables is a map from $(\mathbf{F}_2)^n$ to \mathbf{F}_2 . It is defined either by a truth table or by a multivariate polynomial (called ANF) in the set $\mathbf{F}_2[x_1, \dots x_n]/(x_1^2 + x_1, \dots, x_n^2 + x_n)$.

Example : let $f : (\mathbf{F}_2)^3 \to \mathbf{F}_2$ defined by the ANF $f(x_1, x_2, x_3) = x_1x_2 + x_2x_3 + x_3$. The truth table is 11100010 because f(0,0,0) = 0, f(0,0,1) = 1, f(0,1,0) = 0, f(0,1,1) = 0, ...

Definition of bent functions

A Boolean function f with m variables is *bent* if and only if m is even and if the Hamming distance between f and linear functions is $2^{m-1} - 2^{\frac{m}{2}-1}$ or $2^{m-1} + 2^{\frac{m}{2}-1}$

10/15

Non linearity distribution of Kerdock codes

Let *m* be an even number and the Kerdock set $\{f_1, \ldots, f_{2^{m-1}-1}\}$, of $2^{m-1} - 1$ bent functions, defining the Kerdock code K(m).

Theorem

The nonlinearity distribution of the Kerdock code is given by D_0, \ldots, D_K where all coefficients between D_1 and $D_{2^{m-2}-1}$ are null. Moreover if the sum of two bent functions of the Kerdock set is not in the Kerdock set, then we have $D_0 = 2^{m+1} + 2^{m+2} - 8$ and $\sum_{i\geq 2^{m-2}} D_i = (2^m - 2)(2^m - 4)$.

Interpretation

 D_0 comes mainly from the linear subcode RM(1, m). But 2^{m-2} is greater than the error-correcting capacity of the code ! D_0 is asymptotically negligeable compared to $\sum_{i>2^{m-2}} D_i$.

Application to the (16, 64) code K(4)

There exist 28 cosets $f_i \oplus RM(1,4)$ in RM(2,4), where f_i are quadratic bent functions with 4 variables (without linear part).

Let G(4) be the graphe composed of 28 vertices f_i , where an edge between two vertices f_i and f_j means that $f_i \oplus f_j$ is bent.

An exhaustive search of cliques in this graphe provides a lot of cliques of order 3 and 8 cliques of order 7 :

- ▶ Cliques of order 3 are just composed by $(f_i, f_j, f_i \oplus f_j)$
- ► Each cliques of order 7 provide a Kerdock set (of cardinal 7 = 2⁴⁻¹ − 1) for Kerdock codes K(4), verifying in all cases the distribution D₀ = 88 and D₄ = 168.

Interpretation

The previous theorem is incomplete, the non linearity distribution of all K(4) has only two weights !

For K(6) we also have $D_0 = 374$ and $D_{16} = 3720$.

13/15

Conclusion

Parameters similar to linear codes.

Parameters of K(m) are close to Hadamard codes H(m) or Reed Muller RM(1, m), used in fuzzy commitment schemes.

Resistance against undistinguishability.

Kerdock codes provide a good resistance against attacks in undistinguishability, due to their non linearity distribution.

Efficiency of the construction.

The construction of Hammons *et al.* provides an efficient decoding procedure, as for any cyclic linear codes.

Thank you ! Questions ?

Linear construction (Hammons et al., 1992)

A Kerdock code can be seen as an image of a cyclic (linear) code on \mathbb{Z}_4 , by the Gray map : $\mathbb{Z}_4 \to \mathbf{F}_2^2$. This cyclicity provides an efficient encoding/decoding procedure, based on LFSR on \mathbb{Z}_4 .

It is not exactly the same Kerdock code than previously (for example codewords are not necessary quadratic).

Experiments

Our experiments on K(4) and K(6), constructed from these \mathbb{Z}_4 linear codes, provide the same nonlinearity distribution.

Parameters and numerical results :

H(6) and RM(1,6) are (64, 128, 32) code, whereas K(6) is a (64, 4096, 28) code.

Success probability by block : $p_{H(6)} \simeq 0.998$ by block for H(6) and RM(1,6) against $p_{K(6)} \simeq 0.09$ by block for K(6).

14/15