

**SRA** System Research and Applications





### Random Number Generators in an Industrial Context

Patrick HADDAD – Ugo MUREDDU Security Design Architect System Research & Applications

STMicroelectronics

28/06/2023

## We are creators and makers of technology



## **Global presence**

· ~ .

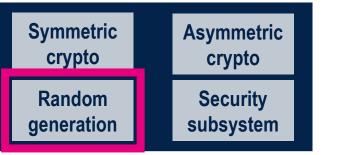
Research & Development
Main Sales & marketing
Front-End
Back-End

10. 20



## SRA security summary

#### System security, building blocks & SoC-level security


#### System security

→ understand & anticipate
 system / applicative needs:
 IoT, AI, and smart mobility

Providing **security IPs** & expertise to product divisions throughout ST

**State-of-the-art lab** to perform side-channel and fault-injection attacks













Connectivity products



Imaging sensors



Wireless chargers



Automotive ICs



### **Random Number Generation**



## Random Generation – definition of terms

### • RNG stands for Random Number Generators

- TRNG: True Random Number Generators
  - Also called entropy source ES
  - Physical: e.g., Oscillators (noise exploitation)
  - Non-Physical: e.g., CPU jitter
  - Unpredictability
- PRNG: Pseudo Random Number Generators
  - Also called DRBG: Deterministic Random Bit Generator
  - Algorithmic (e.g., AES based)
  - Good statistical properties
- NIST standards
  - SP800-90 B: ES
  - SP800-90 A: DRBG
  - SP800-90 C: ES + DRBG





/\* Intializes random number generator \*/
srand((unsigned) time(&t));

| /* Print 5 random numbers from 0 to 49 */ |
|-------------------------------------------|
| for( i = 0 ; i < n ; i++ ) {              |
| <pre>printf("%d\n", rand() % 50);</pre>   |
| 1                                         |





- AIS 31: TRNG
- AIS 20: PRNG
- AIS 20/31: TRNG + PRNG

## Unpredictability vs Good statistical properties

Good statistical properties do not necessarily mean Unpredictability Unpredictability does not necessarily mean Good statistical properties

**Good statistical properties** are demonstrated by statistical tests (bias, correlation, compression, etc.) **Unpredictability** are demonstrated by a stochastic model and quantified by entropy amount

Entropy: measure of disorder, expressed between 0 and 1 (being the best)

Stochastic model: provides a mathematical description of a noise source using random variables. Aimed at showing where the unpredictability (entropy) comes from

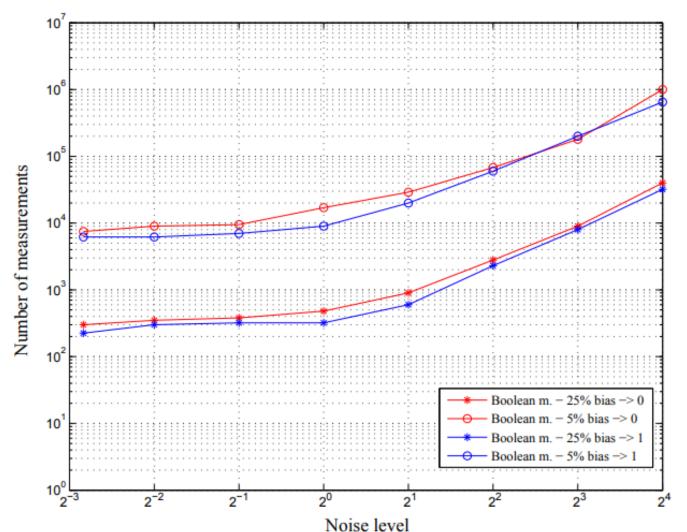
Challenge : A good RNG needs both!





## Impact of bias on cipher key generation

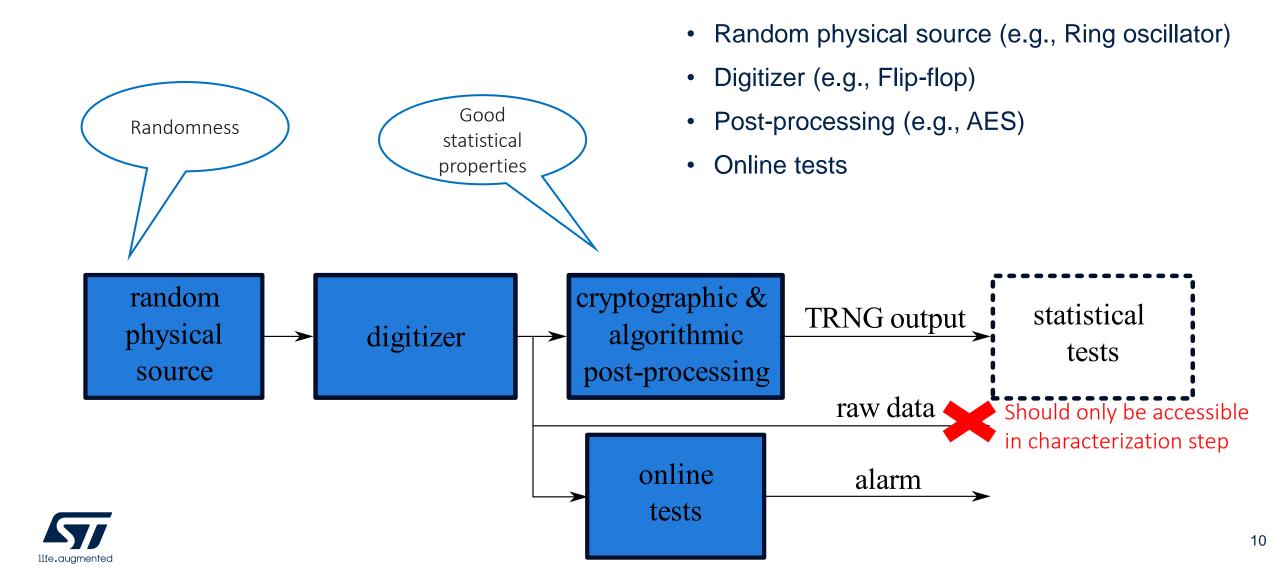
Assuming a good TRNG in term of randomness but with some bias


⇒ ease a brute force cryptanalysis

| 16 possible keys of 4<br>bits<br>(0% of bias) |      | 11 possible keys of 4 bits<br>at least 2 bits at '1'<br>(27.2% of bias) |      | 5 possible keys of 4 bits<br>at least 3 bits at '1' |      |  |
|-----------------------------------------------|------|-------------------------------------------------------------------------|------|-----------------------------------------------------|------|--|
|                                               |      |                                                                         |      | (60% of bias)                                       |      |  |
| 0000                                          | 1000 |                                                                         |      |                                                     |      |  |
| 0001                                          | 1001 |                                                                         | 1001 |                                                     |      |  |
| 0010                                          | 1010 |                                                                         | 1010 |                                                     |      |  |
| 0011                                          | 1011 | 0011                                                                    | 1011 |                                                     | 1011 |  |
| 0100                                          | 1100 |                                                                         | 1100 |                                                     |      |  |
| 0101                                          | 1101 | 0101                                                                    | 1101 |                                                     | 1101 |  |
| 0110                                          | 1110 | 0110                                                                    | 1110 |                                                     | 1110 |  |
| 0111                                          | 1111 | 0111                                                                    | 1111 | 0111                                                | 1111 |  |



## Impact of bias on masking

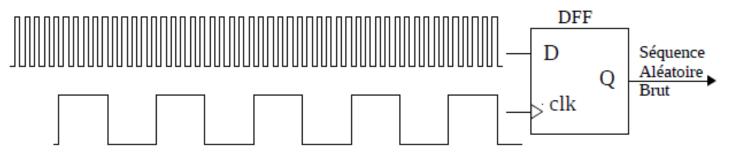

Univariate CPA attacks against AES Sbox protected by 1st-order Boolean masking scheme



https://www.esat.kuleuven.be/co sic/publications/article-2927.pdf



## Commonly approved RNG structure




## **A little bit of history**



## Last millennium's publications: The pioneers

- Simple digitizers
- Analog flow, simple noise sources



Digitizer proposed in [1] and [2]

- Security evaluation: black box statistical tests after postprocessing
  - To validate Good statistical properties
- Easy to implement
- Low throughput (order of Kbits/sec)

[1] Fairfield, R.C., Mortenson, R.L., Coulthart, K.B. (1985). An LSI Random Number Generator (RNG). In: Blakley, G.R., Chaum, D.[2] Jun, B., & Kocher, P. (1999). The Intel random number generator.



## The golden age: 1<sup>st</sup> decade of our millennium

- Proliferation of new principles
  - On the shelf noise sources:
    - Inverter based ring oscillators, PLLs, Latch's
  - Simple digitizers
    - Coherent sampling, Asynchronous counter...
- Security evaluation:
  - Black box tests before postprocessing
  - Rational on the noise's origin
- Easy to implement



• Good throughput (order of Mbits/sec)



## Age of Reason: 2<sup>nd</sup> decade of our millennium

 $\bigcirc$ 

Implementability

Cost

- Stochastic model of some of principles of the previous decades
  - PLL based TRNG
  - Elementary ROs based TRNG
  - **Open loop based TRNG** •
  - Latch based TRNG ٠
- New principles with corresponding stochastic models
  - Asynchronous oscillators based TRNGs
  - Time to digital convertor based TRNG
  - Security evaluation: model-based entropy estimation •
  - Hard to implement ٠

- ~10<sup>6</sup>bits/sec ~10<sup>3</sup>bits/sec
- ~10<sup>6</sup>bits/sec

~10<sup>8</sup>bits/sec

~10<sup>6</sup>bits/sec

~10<sup>6</sup>bits/sec








## Do we really need a fully entropic noise source?

### Elementary ROs based TRNG

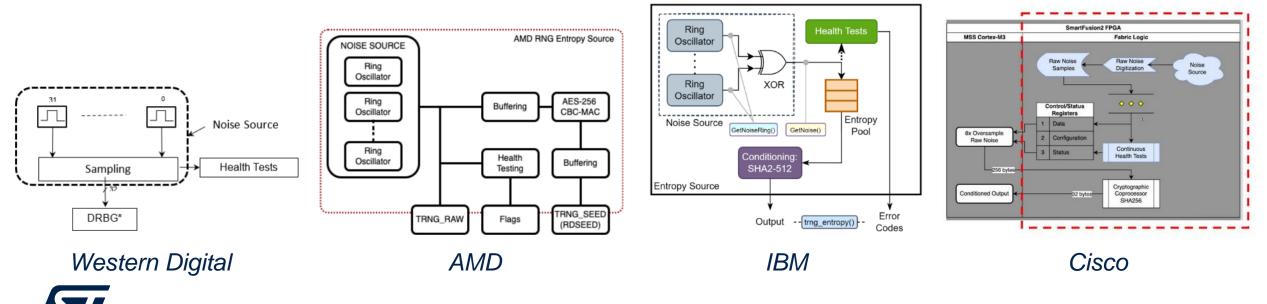


| (K,N)                     | (1,1)  | (2,1)  | (3,1)  | (4,1)  | (5,1)  |
|---------------------------|--------|--------|--------|--------|--------|
| Entropy Per Output Sample | 0.0975 | 0.1216 | 0.1397 | 0.1458 | 0.1515 |
| (K, <mark>N</mark> )      | (1,1)  | (1,2)  | (1,3)  | (1,4)  | (1,5)  |
|                           |        |        |        |        |        |



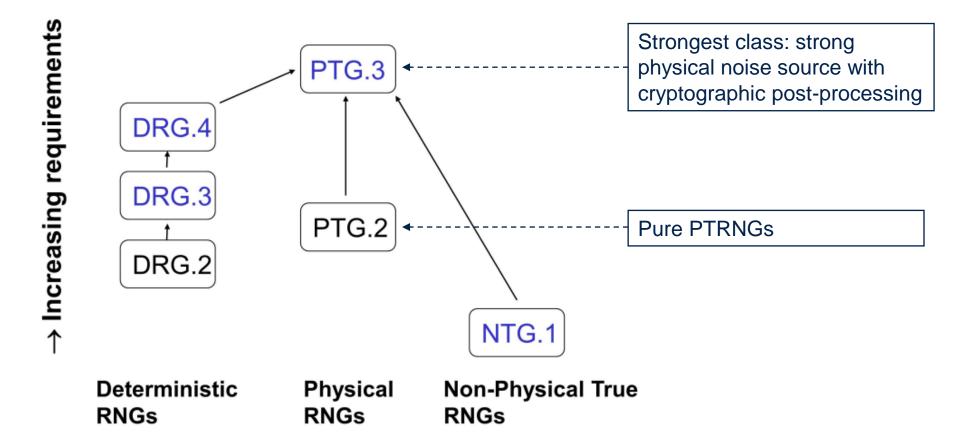
Entropy is better improved by post-processing iterations than raw accumulation

## **Recently certified RNG**




## SP800-90B compliant TRNG

- As of June 8, 2023, 49 standalone entropy sources have been certified
  - 26 classified as "Physical noise source"


life auamente

- 18 Ring Oscillators (RO) based, 7 undisclosed and 1 LED + CMOS Sensor based
- Claimed entropy before conditioning H<sub>mean</sub>= 0.36



## AIS 20/31 – Functionality classes

#### New draft of AIS20/31 from BSI as of June 2023





https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Certification/Interpretations/AIS\_31\_F unctionality\_classes\_for\_random\_number\_generators\_e\_2023.pdf?\_\_blob=publicationFile&v=2

## **RNG** trend

- Standalone TRNG performing in all areas is utopic
  - Always a tradeoff between cost, throughput and good noise extraction
- Trend is to ES/TRNG + DRBG/PRNG => SP800 90C AIS20/31
  - ES/TRNG:
    - As simple as possible
    - Good randomness extraction
    - Relatively low throughput
    - Statistical properties not ideal (before postprocessing)
    - Not intended for 'direct' use Seed for DRBG

- PRNG/DRBG:
  - Based on cryptographic function
  - Good statistical properties
  - Fast
  - Pseudo-random

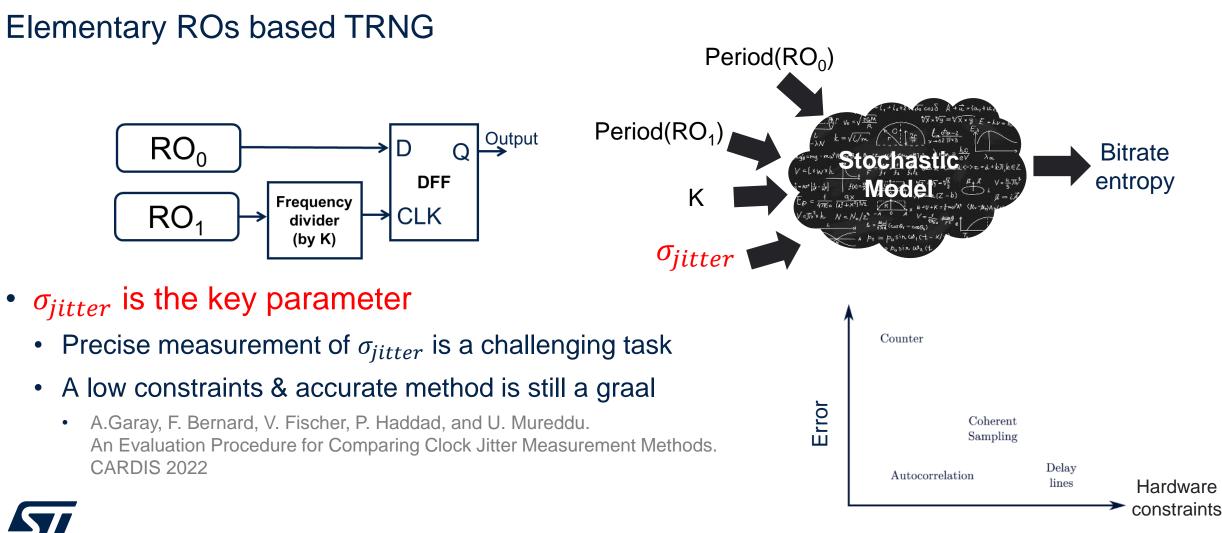


## **RNG** requirements

- *Recall* Two main requirements on RNGs:
  - Output unpredictability: random source
  - Good statistical properties of the output bitstream: post-processing
- Additional requirements for industrial purposes: robustness
  - Stability and repeatability over process, voltage and temperature variations

Being able to guarantee a sufficient level of entropy before conditioning : stochastic model

AND


**Detect any loss below this level : online tests** 



### **Stochastic Model**



## Stochastic model & jitter measurement



### **Online tests**



## Online tests – What standards say about it

### AIS31:

- "An online test / health test shall :
  - Detect non-tolerable entropy defects sufficiently soon,
  - Be tailored to the stochastic model,
  - Use the raw random numbers, because they contain more information than the internal random numbers. "

https://csrc.nist.gov/csrc/media/Presentations/2023/use-of-stochastic-models-in-rbg-standards-challeng/images-media/session-3-mittman-use-of-stochastic-models.pdf

### SP800-90B

- "Intended to ensure that the entropy source continue to operate as expected.
- Goal is to obtain assurance that failures of the entropy source are caught quickly and with a high probability."



## Online tests – What standards say about it

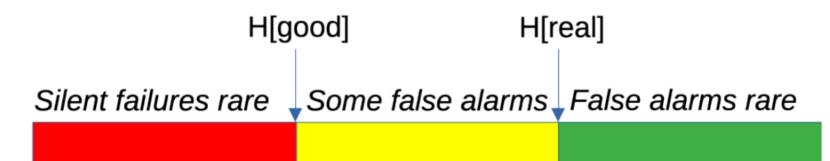
### SP800-90B: two approved online tests

- Repetition Count Test (RCT)
  - Designed to detect total failure (e.g., noise source stuck)
  - Counts identical values generated consecutively
  - If above a cutoff value => triggers an alarm
- Adaptive Proportion Test (APT)
  - Designed to detect large loss of entropy (e.g., strong bias)
  - Counts number of times the same value occurs within 1024 samples (for binary source)
  - If above a cutoff value => triggers an alarm



## Online tests – What standards say about it

### SP800-90B: two approved online tests


- Need to consider false positive vs false negative rates
- False alarm: (false positive)
  - Entropy source operating correctly
  - Alarm raised
- Silent failure: (false negative)
  - Entropy source producing less entropy than claimed
  - No alarm raised
- How to determine cutoff values ?



26

## NIST strategy: under promise, over deliver

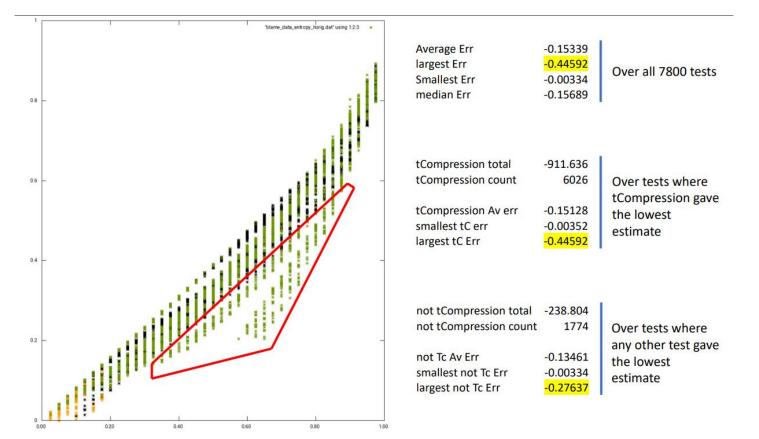
- H<sub>[real]</sub> = lowest expected entropy/bit of source
- H<sub>[good]</sub> = lowest acceptable entropy/bit of source
- Design source so H<sub>[real]</sub> > H<sub>[good]</sub>
- Health tests detect error when entropy < H[good]





27

## Choosing test parameters


### Study from David (DJ) Johnston - Intel Corporation:

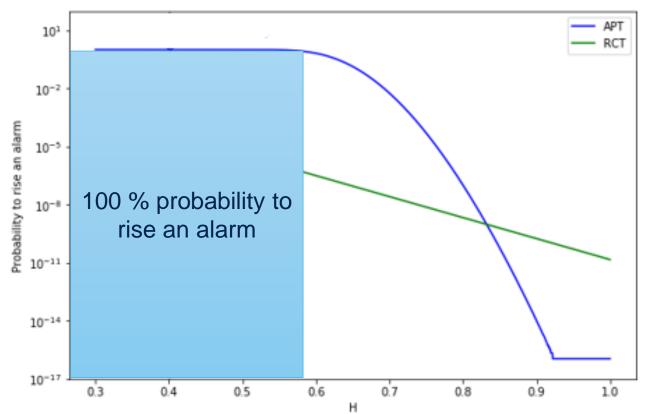
- 7800 samples of entropy data inputted to SP800-90B statistical test suite
- Entropy levels from 0.025 to 0.975 in 0.025 increments
- Actual entropy, Bias and H\_original, along with estimation error and test with the lowest estimate recorded for each data point
- 200 runs per entropy level
- 39 entropy levels
- ea\_non\_iid -i -v -t -l 0,1000000 1 was used



## Choosing test parameters

#### Entropy systematically underestimated

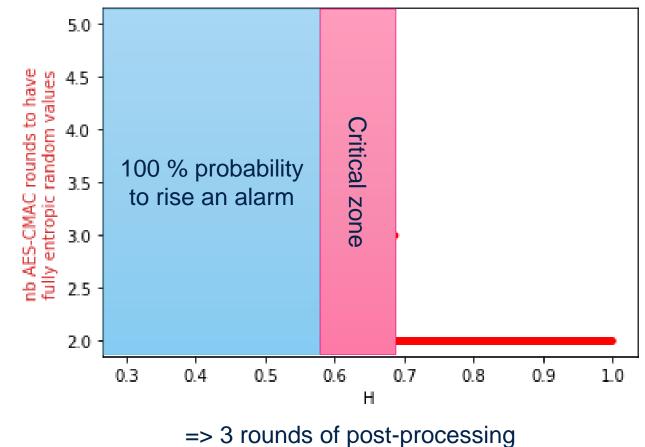





=> SP800-90B min-entropy estimation is already H[good]

## Online tests alarm probability

### Cut-off values determined with $H_{min} = 0.8$


- C = 37 for the RCT
- C = 669 for the APT

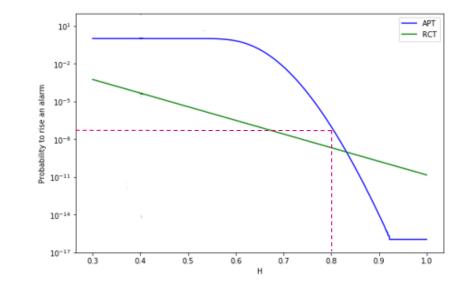




## Post-processing

Number of AES-CMAC post-processing compression rounds to get full entropy output






31

## Online tests & post-processing

<u>Secure</u>: Either we obtain full entropy output with post-processing or we trigger an alarm with 100% probability

<u>Efficient</u>: If we consider min-entropy of at least 0.8 in normal working conditions, probability of a false alarm is very low ( $\approx 0.00001\%$  probability)





## **Conclusion**



## Conclusion

- A good RNG needs unpredictability and good statistical properties
- Companies, academics and standards are merging to a consensus:
  - Simple and reliable entropy source with stochastic model to seed PRNG
  - Cryptographic post-processing to accumulate entropy
  - Accurate online tests to quickly detect failures
  - Fast algorithmic & cryptographic PRNG
- There still remains a lot of room for improvement



# Our technology starts with You



Find out more at <u>www.st.com/careers</u>

© STMicroelectronics - All rights reserved. ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <u>www.st.com/trademarks</u>. All other product or service names are the property of their respective owners.

