

Secret JPEG Image Sharing

Pauline Puteaux

CRIStAL, Université de Lille, Centrale Lille, CNRS (Lille)

Journées Nationales du GDR Sécurité Informatique – Journée commune des GT C2 et SDM du GDR ISIS

June 26th 2023

Motivations

- Intensive image exchanges over social networks.
- Standard compression format is JPEG.

How can we ensure JPEG image security?

G.K. Wallace, "The JPEG still picture compression standard." Communications of the ACM 34.4 (1991): 30-44.

Motivations

- Intensive image exchanges over social networks.
- Standard compression format is JPEG.

How can we ensure JPEG image security?

• Crypto-compression is often used **BUT** depends on a secret key.

Solution: Using secret sharing jointly to JPEG compression.

G.K. Wallace, "The JPEG still picture compression standard." Communications of the ACM 34.4 (1991): 30-44.

• Number of users: *n*

n = 5

k = 3

• Threshold: k

• For instance:

- Number of users: *n*
- Threshold: k

• For instance:

n = 5 k = 3

• Number of users: *n*

n = 5

k = 3

• Threshold: k

• For instance:

- Number of users: *n*
- Threshold: k

How does it work?

- Secret value to share: s
- Finite field
- Based on polynomial interpolation:

$$f(x) = \left(\sum_{l=1}^{k-1} a_l x^l\right) + s$$

Secret image sharing

- Sharing pixel values.
- Each user receives a shared image.

How to extend this principle to JPEG images?

C. C. Thien and J. Lin, "Secret image sharing." Computers & Graphics 26.5 (2002): 765-770.

JPEG compression

Proposed method

- During the **entropy coding** of JPEG
- For each quantized DCT block B_i
- **Concatenation** of the amplitudes $A_{F'(u,v)}$ to obtain a secret A_i
 - If $|\mathbf{A}_i| < \log_2(n+1)$: B_i remains in the clear domain.
 - If $|\mathbf{A}_i| \ge \log_2(n+1)$:
 - (k,n)-secret sharing over the Galois field GF(2^{|Ai|})
 - *n* shared values S_{ij} obtained $(1 \le j \le n)$
 - S_{ij} injected by substitution into each shared JPEG image SI_{ij}

Proposed method

DC	1	0	0	0	0	0	11
-5	0	0	0	0	0	0	
4	0	0	0	0	0		
0	0	0	0	0			
0	0	0	1				
0	0						
0							
DCT coefficients (after quantization) of block B;							

Detailed example

- Original uncompressed image (197 kB) from UCID database.
- Shared JPEG image, with k = 3, n = 5 and QF = 90 (79 kB).

- High frequency details are secured (PSNR = 14 dB).
- Compressed shared images are of the **same size** as the reconstructed image.

G. Schaefer and M. Stich, "UCID: An uncompressed color image database," in Storage and Retrieval Methods and Applications for Multimedia, vol. 5307, 2004, pp. 472–480.

Detailed example

- Original image directly compressed with JPEG, QF = 90 (79 kB).
- Reconstructed JPEG image, QF = 90 (79 kB).

• The two images are the same.

AC coefficients' distribution

Sharing space

- Percentage of secured bits over the image size (in bits), as a function of the QF.
- The bigger is *n*, the larger is the number of blocks that remain in clear.
- Similar results as with JPEG crypto-compression.

Visual security levels (color image)

- QF = 90.
- Four possible combinations of our method.

AC + DC

AC only

D. Engel, T. Stütz, and A. Uhl, "A survey on JPEG2000 encryption," Multimedia systems, vol. 15, no. 4, pp. 243–270, 2009.

Conclusion and perspectives

- Secret sharing over **Galois fields** along with JPEG compression.
- Fully format compliant and size preserving method.
- Sufficient visual security level (identical to crypto-compression methods).

Future work?

• Studying the impact of a noisy shared JPEG image during reconstruction.

Thank you for your attention!

Our paper: P. Puteaux, F. Yriarte, and W. Puech. "A Secret JPEG Image Sharing Method Over GF(2^M) Galois Fields." IEEE Transactions on Circuits and Systems for Video Technology, vol. 33, no. 6, pp. 3030-3042, 2023.

Pauline Puteaux

pauline.puteaux@cnrs.fr

Journées Nationales du GDR Sécurité Informatique – Journée commune des GT C2 et SDM du GDR ISIS June 26th 2023

