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Why & What is Jasmin
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Challenges for a (post-quantum) cryptography library

Ambitious goals
Security proof (algorithm, quantum
adversaries, EasyCrypt)
Execution speed
Functional correctness
Safety
Security against:

side-channel attacks
speculative execution attacks

All those guaranties should be provided at
the assembly level

Illustration: crypto/sha/asm/keccak1600-avx2.pl (OpenSSL)

crypto/sha/asm/keccak1600-avx2.pl
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Formosa Crypto https://formosa-crypto.org/

Jasmin
A programming language that enables both:

crypto practitioners to write optimized implementations
formal method enthusiasts to verify these implementations

A tool-box
Certified compiler: allows reasoning at source level
Automatic checkers (safety, constant-time)
EasyCrypt support for semi-automatic verification

LibJade: work in progress https://github.com/formosa-crypto/libjade
Aim: comprehensive library of (post-quantum) cryptography primitives

e�icient
verified
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An illustrative Jasmin program

1 export
2 fn lehmer(reg u64 state) −→ reg u64 {
3 reg u64[2] s m;
4 stack u64[2] t;
5 inline int i;
6 reg u64 j result;
7 for i = 0 to 2 {
8 s[i] = [state + i * 8];
9 }

10 m[0] = 0x261fd0407a968add;
11 m[1] = 0x45a31efc5a35d971;
12 t = mul128(s, m);
13 result = t[1];
14 j = 0;
15 while (j < 2) {
16 [state + j * 8] = t[(int) j];
17 j += 1;
18 }
19 return result;
20 }

1 inline
2 fnmul128(reg u64[2] x y) −→ stack u64[2] {
3 reg u64 xhi ylo lo hi tmp;
4 stack u64[2] r;
5 xhi = x[1];
6 ylo = y[0];
7 hi, lo = #MULX(ylo, x[0]);
8 tmp = xhi * y[0];
9 hi += tmp;

10 y[1] *= x[0];
11 y[1] += hi;
12 r[0] = lo;
13 r[1] = y[1];
14 return r;
15 }
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Formal Semantics

Semantics judgment, defined in Coq
In program p,
calling function f with arguments ~a from initial memory m
terminates in final memory m′ and returns values ~r :

f : (~a,m) ⇓p (~r,m′)

Automatic Checker, implemented in OCaml
Infers a su�icient precondition P (for a function f in program p) such that:

∀~a m, P(~a,m) =⇒ ∃~r m′, f : (~a,m) ⇓p (~r,m′)

polyhedra for numerical arguments
range and alignment for pointer arguments
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Compiler Correctness (Coq)

Semantics Preservation (forward simulation)
If the compilation of program p produces a program p′,
then its safe behaviors are preserved:

∀~a m~r m′, f : (~a,m) ⇓p (~r,m′) =⇒ f : (~a,m) ⇓p′ (~r,m′).

Hidden Details
Source and target languages are di�erent
Initial states are not the same (but tightly related)
The target stack must be large enough

i.e., the compiler does not enforce the absence of “stack overflow”
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Consequences of Compiler Correctness

Source-level reasoning is correct
Functional properties carry down to the assembly code
including semantic security

Limits
Non-functional properties
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Formal Verification of Jasmin Programs, using EasyCrypt

Jasmin programs are translated into pWhile programs

For functional correctness
Using (probabilistic) Hoare logic; or
by proving program equivalence.

For semantic security (e.g., IND$-CPA)
This is where EasyCrypt shines

For implementation security (e.g., constant-time)
Using relational Hoare logic
on an instrumented program with explicit information leakage.
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A few Case Studies
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Fast Implementations

Two example of implementations in Jasmin, as fast as the fastest available
implementations:

Curve25519 [CCS17]
Scalar multiplication on a standard
elliptic curve
Verified for safety and
constant-time security

Chacha20/Poly1305 [SP20]
Authenticated encryption scheme
Verified for safety and constant-time
security
With formal proofs of functional correctness
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Fast, Secure, and Correct

Secure High-Assurance Implementations of sha-3 [CCS19]
Fast (optimized for avx2)
Secure (constant-time)
Correct (wrt. a reference implementation)

Indi�erentiability proof of the Sponge construction
Main theorem about security of sha-3
Bounds the probability for an adversary to break it:

in particular to find collisions, preimages, or second preimages
Theorem applies to the optimized implementation!
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Post Quantum implementations

Kyber [CHES23]
KEM
Reference + avx2 implementations
Verified for safety, functional
correctness (hard part)

Dilithium [CRYPTO23]
Signature Scheme
Reference implementation
Formal security proof in Easycrypt



14 / 22

Side channels
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Implementation Security

Adversaries may observe the machine running a victim program.

Is any sensitive information leaked into these observations?

Constant-Time
A popular mitigation against timing (cache-based) side-channel attacks
Two rules

No branching on secret data
No memory access at secret addresses

Can be checked using a taint analysis
Propagate from entry-points “security labels” (low/high)

Preservation of Constant-Time (Swarn Priya Thesis) [CSF18, POPL19, CCS21]
Source is CT implies target is CT



16 / 22

Fine-Grained Leakage Models for Constant-Time

Variation of the model [CCS22]
The base-line constant-time model is too coarse in practice:

some arithmetic operations leak a function of their arguments (DIV/MOD)
leaking only the cache line
Bug found in OpenSSL, patch accepted.

Problem with rejection sampling
Kyber, Dilithium and Falcon are all based on rejection sampling
This is not constant time, but it can be (approximate) probabilistic constant time
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Spectre Security

A serious vulnerability
Leakage of sensitive information due to speculative execution (branch prediction)
Not a hardware bug

E�iciently mitigated [SP23]
Manually protect (against V1) the whole LibJade library (using SSLH)
Automatically prove the result secure (type system)
Experimentally assess that the protection cost is low
Don’t know how to prove preservation !!!
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We are not done yet!
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Scalability

Still hard to program in Jasmin

Lacking documentation
Register allocation error message are not helpful
Detailed knowledge of the target architecture is o�en needed

Lack of modularity

No separate compilation
Existing libraries are di�icult to reuse

Checking safety of Kyber decapsulation takes 16 CPU-hours

Functional correctness hard to establish
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Portability

Target architectures
Currently: x86_64
Soon: ARMv7
Later: ARMv8, RISC-V, Open-titan?

Open question
How to build & maintain a comprehensive, multi-platform, verified library ?



21 / 22

Security Proofs

More than Spectre V1, zeroing the stack and register . . .

Correctness proofs too hard (link with Cryptoline?)

Post-quantum security proof (EasyPQC, [CCS21])

Falcon needs floating point (dealing with error) and new notion (Rényi divergence)
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Questions?

Thanks
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