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Informal definition 

concurrent program relying on cryptography 
to secure communications 

• Notoriously difficult to design and deploy securely 

• Loads of failure stories: attacks, fixes, attacks, fixes, attacks, etc.

Examples: TLS, EMV (credit cards), RFID, e-voting, mobile com., etc.

☞ What can we do today to avoid such failures in the future?
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• Threat model:

i. active adversary controlling the network (intercept, modify, inject) 

ii. is able to use cryptography

iii. cryptography as black-box (attacker’s interface = functionality)

• « Messages as formal terms » paradigm: 
 

E.g., symmetric encryption:

• function symbols enc/2, dec/2 and 

• equation dec(enc(m,k),k) = m

 

☞ Find or prove the absence of design-level logical attacks since the 80s  
E.g., MITM, downgrade, impersonation, authentication bypass, Unknown Key-Share (UKS), 
        Key Compromise Impersonation (KCI), cross-protocol, and protocol composition attacks, etc.
 

☞ Limited to specifications, existing implementations are out of scope (e.g., OpenSSL)
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Fuzzing:
● Instrument the PUT to record feedback
● Store a corpus of test-cases 

● Fuzzing loop: while true do
○ Pick a test-case
○ Apply random transformation = mutation
○ Execute + collect feedback
○ Add it to the corpus if interesting  

according to feedback = progress 
(e.g., new coverage) 
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☞ Logical attack states are not reached 
   ☞ miss some memory vulnerabilities 
structural message modification: 
e.g., negligible probability of finding a 
valid encryption through mutations 
message flow modification  

☞ Protocol vulnerabilities are not detected 
  e.g., authentication bypass (no crash) Output: 0x4fad1...
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• State-machine fuzzers/learners where:


• Input state = state-machine model: e.g., finite alphabet, automaton


• Test-case = series of actions (from alphabet), e.g., ClientHello, ServerHello 

+ Captures protocol vulnerabilities corresponding to state-machine violations in 
implementations, e.g., [22-25640] SkipVerify (auth. bypass with CertInfo but wo/ Cert)

- Reachability: no (structural) message modifications (except finite built-in modifs)  
    ☞ does not capture the class of logical attacks 
- Detection: manual+incomplete vulnerability detections (memory/protocol vulns)
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tr := out(r, w).tr  : r is a role (client/server) and w is a variable (attacker knows) 
     |  in(r, R).tr     : R is a term in the term algebra (computed by attacker) 
     |  0

 
 

Example: tra=out(cl,w1).in(serv,w1).out(serv,w2).in(cl, sign(extract(w2), ska)).0

DY Fuzzer = DY attacker in a fuzzing loop
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a. call ref/PUT crypto functions to evaluate R into a bitstring bR

E.g., eval(sign(R’,sk)) = RSAPUT(eval(R’),bsk) 
         eval(w) = bw 
         bsk is obtained by calling genKeyPUT() 

b. call PUT role function to write bR onto input buffer of r + make r progress

Executor (1 + 2.b): require a lightweight instrumentation of the PUT 
Mapper (2.a): requires a per-protocol « executable term-algebra »

DY Fuzzing: Big Picture

tr := out(r, w).tr 
      |  in(r, R).tr 
      | 0

☞ Do not require a protocol DY model but only a DY attacker model (i.e., term algebra)
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• State⭐: test-cases = DY traces, 
              seeds corpus = happy flows

• Scheduler: FIFO

• Mutator⭐: custom trace mutations

• Harness⭐: Mapper + Executor + Claims
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• Introduce claims triggered by roles executing the PUT (part of Harness/Executor) 
E.g., agreement claims: Agr(client, pk, m)@i client believes to have agreed with server with pk on m @ ith action

• Classical in DY models: security properties expressed as 1st-order formula 
E.g., agreement property ∀pk,m: Agr(client, pk, m)@i ⇒ Run(server, pk, m)@j  ⋀ j<i

•  DY Objective oracle also checks DY security properties

• Gather all the claims throughout traces executions at the PUT

• Check all the DY security properties (where terms are concretized to bitstrings)

+
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• In-memory buffers, delightfully parallel, fast (700 execs/s/core)

• For TLS: 189 function symbols, harnessed PUTs: OpenSSL, WolfSSL, LibreSSL

• Beyond fuzzing: Connect to a PUT through TCP (easier to connect to new PUTs) 
+ Traces are: executable, serializable, pretty-printable (as trees), concretizable (for PoC)

• Optimizations: fragmented output, queries for variables, transcript extraction
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WolfSSL Harness
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•Traces + Domain-Specific Language

•Mutations

•Objective oracle (based on DY properties)

•Fuzzing-loop, CLI with all commands

Once-for-all 
6k LoC

Per protocol (here TLS)

Mapper most difficult 

8k LoC

Per PUT, quite lightweight 
+ TCP mode 

500 LoC

tlspuffin 
•Term signature

•Mapper: term → bitstrings

•DY security properties

•Seed corpus with DSL

OpenSSH Harness

SSHpuffin 
•……..

21



tlspuffin Results



/31

tlspuffin findings 👺

23



/31

tlspuffin findings 👺
• We selected a small 

benchmark suite: recent 
logical attacks found on 
OpenSSL (most used) and 
WolfSSL (IoT)

23



/31

tlspuffin findings 👺
• We selected a small 

benchmark suite: recent 
logical attacks found on 
OpenSSL (most used) and 
WolfSSL (IoT)

• Found by tlspuffin in hours 
or seconds (SKIP), 
systematic reproducibility!

23



/31

tlspuffin findings 👺
• We selected a small 

benchmark suite: recent 
logical attacks found on 
OpenSSL (most used) and 
WolfSSL (IoT)

• Found by tlspuffin in hours 
or seconds (SKIP), 
systematic reproducibility!

• We ran fuzzing campaigns 
on the harnessed PUTs and 
found 4 new CVEs 
☞Not found by other fuzzers

!!!
!

!
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Requires structural modifications 
to messages

Protocol vulnerabilities 
(e.g., authentication violation)

State-machine 
vulnerabilities

Requires message flow 
modifications

Bit-Level 
Fuzzers  

e.g., AFLnet
StateMachine 

Fuzzers

DY formal verification

DY Fuzzing

HeartBleed

3SHAKE

Renegotiation

CVE-2022-39173 (us)

CVE-2022-38153 (us)

Gnu's GotoFail

WinShock

CVE-2022-25638

CVE-2022-4295 (us)

CVE-2022-38152 (us)

SKIP

CVE-2021-3449

DROWN

POODLE
FREAK*

CVE-2022-25640Apple’s GotoFail

CloudBleed

LOGJAM
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Bug triaging

1. Objective traces are stored on disk during fuzzing


2. Execute against clean slate WolfSSL through TCP


3. Plot the trace, inspect the attacker terms, could modify and re-execute 
 
☞ Understand the attack requirements


4. gdb/ldb tlspuffin+WolfSSL execute trace (action-by-action, step-by-step) 
 
☞ Understand the attack root causes
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☞ Flaw 1: actually computes « multiset-intersection » so suitesS  will contain duplicates of c (say k times)
☞ No big deal because suitesS initially had no duplicate so: k = n ≤ |suitesC|  ≤  MAX_SZ = 150 

Root causes of CVE-2022-39173 (WolfSSL, CVSS high)

How WolfSSL implements ∩ with refineSuites(suitesC)@tls13.c:4355

// suitesS initially with offered suites, MAX_SZ allocated 

byte suites[MAX_SZ]; int suiteSz = 0; // supposed to compute suitesS ∩ suitesC 

for (i = 0; i < suitesS.size; i += 1) {
      for (j = 0; j < suitesC.size; j += 1) {   // suitesC.size <= MAX_SZ
            if (suitesS->suites[i] == suitesC->suites[j]) {
                suites[suiteSz++] = suitesC->suites[j]; } } }
XMEMCPY(suitesS, &suites, sizeof(suites));  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(c) Is ill-formed and will be rejected but late (after call to refineSuites), mess with supportGroupExtension

☞ Server rejects it and sends a HelloRetryRequest but
☞ Flaw 2: side-effects of refineSuites are not reverted
☞ From now on, refineSuites invariant is broken: suitesS contains n duplicates of c 

3. Send ClientHello([c;..;c]) again, refineSuites is called again, the resulting buffer suites that contains 
k2 = n2 ciphers c is copied into suitesS

☞ For n = 13, we already overwrite the suitesS buffer allocated on MAX_ciphers_list_length = 150

Root causes of CVE-2022-39173 (WolfSSL, CVSS high)

 
An overflow on the stack of max 44700 bytes (controlled by n).

☞ Therefore, large portions of the stack can get overwritten, including return addresses (confirmed)
☞ Potential RCE (unconfirmed)
☞ Potential for negotiating ciphers that server should reject (downgrade) 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• tlspuffin always found the new CVEs
• state-of-the art competitive fuzzers never found any of them
We can explain this with qualitative evidences but quantitative evidences are hard to obtain

• Code-coverage is a poor metric 
 
 
 
E.g., client accepting a legitimate server’s certificate =coverage accepting illegitimate cert. 

• Yet, some insights by manual analysis of the diff-coverage (tlspuffin vs. AFLnet)
• tlspuffin explores more extensions requiring structured messages approach (crypto) 

(e.g., mutations UNDER encryption/signature)
• Other fuzzers beat tlspuffin code-coverage for discovering some functionalities in 

ClientHello (e.g., discover a lot more ciphers yet without being able to then use them)

   A statement reached from an attack state is similarly counted as if reached from the happy flow
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DY coverage: code-coverage is currently a bottleneck (prone to exhaustion)
→ Need for a domain-specific DY-based notion of coverage 
      Hitting the same code with different adversarial behaviors should not be considered the same   
→ Combine with a proxy for how close a trace is to an attack trace (use Tamarin?) 
      Could be useful to incentivize better term generation and some attack scenarios
→ Combine and find a balance with code-based coverage  (specified vs. implemented 
functionalities)

Improved objective oracle
•  Differential fuzzing: save t as objective when WolfSSL(t) ≄ OpenSSL(t)
•  Or extend the oracle: more compromise scenarios, secrecy (abstraction, 
deduction?), privacy (approx.?), functional correctness / a model
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Future Work (cont.)
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Future Work (cont.)

•  Combine DY fuzzing with bit-level fuzzing (WIP): reach « deep states » with DY 
attacker and then smash with some bit-level mutations 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Future Work (cont.)

•  Combine DY fuzzing with bit-level fuzzing (WIP): reach « deep states » with DY 
attacker and then smash with some bit-level mutations 

•  DY-based concolic testing: use DY verifiers to synthesize test cases that pass 
“complex” conditions 

•  Apply DY fuzzing to more protocols and PUTs (e.g., SChannel, WPA, TelCo) 

Long-Term
•  (Partially) Automate Mapper and Harness → PUT-agnostic DY fuzzer
•  Model extraction 
•  Connect further with DY verifiers (ProVerif, Tamarin, Sapic+)
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Summary of Contributions
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Summary of Contributions

1. A new approach to fuzzing cryptographic protocols  
connecting the DY formal approach with fuzzing  
→ captures for the first time the class of logical 
attacks / DY attacker

2. DY Fuzzing design specification

3. tlspuffin: full-fledged, modular, efficient DY fuzzer 
implementation for TLS

4. Evaluate tlspuffin on TLS libraries:

• (re)found seven vulnerabilities

• including four new ones (one critical, two high, 
and one medium)

Preprint IACR 2023/057


Project ANR JCJC 
→ Looking for student/postdocs/engineers
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Retrospective of TLS Failures             2019-2022
Affects the specification

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Requires structural modifications 
to messages

Protocol vulnerabilities 
(e.g., authentication violation)

State-machine 
vulnerabilities

Requires message flow 
modifications

Bit-Level 
Fuzzers  

e.g., AFLnet
StateMachine 

Fuzzers

DY formal verification

HeartBleed

3SHAKE

RenegotiationGnu's GotoFail

WinShock

CVE-2022-25638

SKIP

CVE-2021-3449

DROWN

POODLE

CVE-2022-25640Apple’s GotoFail

CloudBleed

LOGJAM

FREAK
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Seed Corpus

MITM

(Happy flow)

(Happy flow)
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Tlspuffin Terms Domain-Specific Language
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Tlspuffin Traces Domain-Specific Language
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Plotting Terms and Traces
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tlspuffin: a full-fledge DY fuzzer
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tlspuffin: a full-fledge DY fuzzer
• Open-source project written in Rust (16k LoC)  (tlspuffin on Github)

• Built on LibAFL, a modular library to build fuzzers (+ new/custom components⭐)

• In-memory buffers, delightfully parallel, fast (700 execs/s/core)

• For TLS: 189 function symbols, harnessed PUTs: OpenSSL, WolfSSL, OpenSSL

• Beyond fuzzing: Connect to a PUT through TCP (easier to connect to new PUTs) 
+ Traces are: executable, serializable, pretty-printable (as trees), concretizable (for PoC)

• Optimizations:

• fragment outputs by extracting sub-messages → smaller terms

• queries for accessing output variable access → more robust through mutations

• automatic transcript extraction → much smaller terms, think < m,MAC(h(transcript),k) >
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