
Lucca Hirschi, Inria Nancy joint work with Steve Kremer and Max Ammann

DY Fuzzing:
Formal Dolev-Yao Models Meet
Protocol Fuzz Testing

June 28th 2023 @ JN GDR Sécurité, Paris

Secure Cryptographic Protocols

/31

Cryptographic Protocols
Informal definition 

concurrent program relying on cryptography
to secure communications 

Examples: TLS, EMV (credit cards), RFID, e-voting, mobile com., etc.

3

/31

Cryptographic Protocols
Informal definition 

concurrent program relying on cryptography
to secure communications 

• Notoriously difficult to design and deploy securely

• Loads of failure stories: attacks, fixes, attacks, fixes, attacks, etc.

Examples: TLS, EMV (credit cards), RFID, e-voting, mobile com., etc.

3

/31

Cryptographic Protocols
Informal definition 

concurrent program relying on cryptography
to secure communications 

• Notoriously difficult to design and deploy securely

• Loads of failure stories: attacks, fixes, attacks, fixes, attacks, etc.

Examples: TLS, EMV (credit cards), RFID, e-voting, mobile com., etc.

☞ What can we do today to avoid such failures in the future?
3

/31

Retrospective of TLS Failures 2014-2022

4

/31

HeartBleed

Apple’s GotoFail

CloudBleed

Retrospective of TLS Failures 2014-2022

4

/31

HeartBleed

3SHAKE

FREAK

CVE-2022-25640Apple’s GotoFail

CloudBleed

Retrospective of TLS Failures 2014-2022

4

/31

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

HeartBleed

3SHAKE

Gnu's GotoFail

WinShock

FREAK

CVE-2022-25640Apple’s GotoFail

CloudBleed

Retrospective of TLS Failures 2014-2022

4

/31

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Protocol vulnerabilities 
(e.g., authentication violation)

HeartBleed

3SHAKE

Gnu's GotoFail

WinShock
SKIP

FREAK

CVE-2022-25640Apple’s GotoFail

CloudBleed

Retrospective of TLS Failures 2014-2022

4

/31

Affects the specification

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Protocol vulnerabilities 
(e.g., authentication violation)

HeartBleed

3SHAKE

RenegotiationGnu's GotoFail

WinShock
SKIP

DROWN

POODLE
FREAK

CVE-2022-25640Apple’s GotoFail

CloudBleed

LOGJAM

Retrospective of TLS Failures 2014-2022

4

/31

Affects the specification

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Protocol vulnerabilities 
(e.g., authentication violation)

State-machine 
vulnerabilitiesHeartBleed

3SHAKE

RenegotiationGnu's GotoFail

WinShock
SKIP

CVE-2021-3449

DROWN

POODLE
FREAK

CVE-2022-25640Apple’s GotoFail

CloudBleed

LOGJAM

Retrospective of TLS Failures 2014-2022

CVE-2022-25638

4

/31

Affects the specification

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Protocol vulnerabilities 
(e.g., authentication violation)

State-machine 
vulnerabilities

DY formal verification

HeartBleed

3SHAKE

RenegotiationGnu's GotoFail

WinShock
SKIP

CVE-2021-3449

DROWN

POODLE
FREAK

CVE-2022-25640Apple’s GotoFail

CloudBleed

LOGJAM

Retrospective of TLS Failures 2014-2022

CVE-2022-25638

4

/315

Dolev-Yao Formal Verification

/31

• Formal models for analyzing cryptographic protocols (e.g., applied-π calculus)

5

Dolev-Yao Formal Verification

/31

• Formal models for analyzing cryptographic protocols (e.g., applied-π calculus)

• Threat model:

i. active adversary controlling the network (intercept, modify, inject)

ii. is able to use cryptography

iii. cryptography as black-box (attacker’s interface = functionality)

5

Dolev-Yao Formal Verification

/31

• Formal models for analyzing cryptographic protocols (e.g., applied-π calculus)

• Threat model:

i. active adversary controlling the network (intercept, modify, inject)

ii. is able to use cryptography

iii. cryptography as black-box (attacker’s interface = functionality)

• « Messages as formal terms » paradigm: 
 

E.g., symmetric encryption:

• function symbols enc/2, dec/2 and

• equation dec(enc(m,k),k) = m

5

Dolev-Yao Formal Verification

/31

• Formal models for analyzing cryptographic protocols (e.g., applied-π calculus)

• Threat model:

i. active adversary controlling the network (intercept, modify, inject)

ii. is able to use cryptography

iii. cryptography as black-box (attacker’s interface = functionality)

• « Messages as formal terms » paradigm: 
 

E.g., symmetric encryption:

• function symbols enc/2, dec/2 and

• equation dec(enc(m,k),k) = m

 

☞ Find or prove the absence of design-level logical attacks since the 80s  
E.g., MITM, downgrade, impersonation, authentication bypass, Unknown Key-Share (UKS), 
 Key Compromise Impersonation (KCI), cross-protocol, and protocol composition attacks, etc.
 

☞ Limited to specifications, existing implementations are out of scope (e.g., OpenSSL)
5

Dolev-Yao Formal Verification

/31

Affects the specification

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Protocol vulnerabilities 
(e.g., authentication violation)

State-machine 
vulnerabilitiesHeartBleed

3SHAKE

RenegotiationGnu's GotoFail

WinShock
SKIP

CVE-2021-3449

DROWN

POODLE
FREAK

CVE-2022-25640Apple’s GotoFail

CloudBleed

LOGJAM

Retrospective of TLS Failures 2014-2022

CVE-2022-25638

6

/31

Affects the specification

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Protocol vulnerabilities 
(e.g., authentication violation)

State-machine 
vulnerabilities

DY formal verification

HeartBleed

3SHAKE

RenegotiationGnu's GotoFail

WinShock
SKIP

CVE-2021-3449

DROWN

POODLE
FREAK

CVE-2022-25640Apple’s GotoFail

CloudBleed

LOGJAM

Retrospective of TLS Failures 2014-2022

CVE-2022-25638

6

/31

Affects the specification

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Protocol vulnerabilities 
(e.g., authentication violation)

State-machine 
vulnerabilities

DY formal verification

Bit-Level 
Fuzzers  

e.g., AFLnet

HeartBleed

3SHAKE

RenegotiationGnu's GotoFail

WinShock
SKIP

CVE-2021-3449

DROWN

POODLE
FREAK

CVE-2022-25640Apple’s GotoFail

CloudBleed

LOGJAM

Retrospective of TLS Failures 2014-2022

CVE-2022-25638

6

/31

Bit-level fuzzing (AFL-like)

7

/31

Bit-level fuzzing (AFL-like)

Output: 0x4fad1...

Program
Under
Test

Crash ↯

feedback

Fuzzing:
● Instrument the PUT to record feedback

Execute

7

/31

Bit-level fuzzing (AFL-like)

Output: 0x4fad1...

Program
Under
Test

Crash ↯

feedback

Corpus of
test-cases

Fuzzing:
● Instrument the PUT to record feedback
● Store a corpus of test-cases 

Execute

Seed corpus

7

/31

Bit-level fuzzing (AFL-like)

Program
Under
Test

Corpus of
test-cases

Fuzzing:
● Instrument the PUT to record feedback
● Store a corpus of test-cases 

● Fuzzing loop: while true do
○ Pick a test-case

Pick a test-case

Test-case: 0xd40446…

Seed corpus

7

/31

Bit-level fuzzing (AFL-like)

Program
Under
Test

Random mutation

Corpus of
test-cases

Fuzzing:
● Instrument the PUT to record feedback
● Store a corpus of test-cases 

● Fuzzing loop: while true do
○ Pick a test-case
○ Apply random transformation = mutation

Pick a test-case

Test-case: 0xd40446…

Test-case: 0xe50446…Seed corpus

7

/31

Bit-level fuzzing (AFL-like)

Program
Under
Test

Random mutation

Corpus of
test-cases

Fuzzing:
● Instrument the PUT to record feedback
● Store a corpus of test-cases 

● Fuzzing loop: while true do
○ Pick a test-case
○ Apply random transformation = mutation
○ Execute + collect feedback

Pick a test-case

Test-case: 0xd40446…

Test-case: 0xe50446…

Output: 0x4fad1...

Crash ↯

feedback

Execute

Seed corpus

7

/31

Bit-level fuzzing (AFL-like)

Program
Under
Test

Random mutation

Corpus of
test-cases

Fuzzing:
● Instrument the PUT to record feedback
● Store a corpus of test-cases 

● Fuzzing loop: while true do
○ Pick a test-case
○ Apply random transformation = mutation
○ Execute + collect feedback
○ Add it to the corpus if interesting

according to feedback = progress
(e.g., new coverage)

Pick a test-case

Test-case: 0xd40446…

Test-case: 0xe50446…

?

Output: 0x4fad1...

Crash ↯

feedback

Execute

Seed corpus

7

/31

Bit-level fuzzing (AFL-like)
☞ Finds memory/crash vulnerabilities in implementations
E.g., buffer-overflow, use after free, RCE, etc.

Output: 0x4fad1...

Program
Under
Test

Random mutation

Crash ↯

feedback

Corpus of
test-cases

Pick a test-case

Test-case: 0xd40446…

Execute

Test-case: 0xe50446…

?

Output: 0x4fad1...

Crash ↯

feedback

Execute

8

/31

Bit-level fuzzing (AFL-like)
☞ Finds memory/crash vulnerabilities in implementations
E.g., buffer-overflow, use after free, RCE, etc.

☞ Logical attack states are not reached 
 ☞ miss some memory vulnerabilities 
structural message modification: 
e.g., negligible probability of finding a
valid encryption through mutations 
message flow modification  

Output: 0x4fad1...

Program
Under
Test

Random mutation

Crash ↯

feedback

Corpus of
test-cases

Pick a test-case

Test-case: 0xd40446…

Execute

Test-case: 0xe50446…

?

Output: 0x4fad1...

Crash ↯

feedback

Execute

8

/31

Bit-level fuzzing (AFL-like)
☞ Finds memory/crash vulnerabilities in implementations
E.g., buffer-overflow, use after free, RCE, etc.

☞ Logical attack states are not reached 
 ☞ miss some memory vulnerabilities 
structural message modification: 
e.g., negligible probability of finding a
valid encryption through mutations 
message flow modification  

☞ Protocol vulnerabilities are not detected 
 e.g., authentication bypass (no crash) Output: 0x4fad1...

Program
Under
Test

Random mutation

Crash ↯

feedback

Corpus of
test-cases

Pick a test-case

Test-case: 0xd40446…

Execute

Test-case: 0xe50446…

?

Output: 0x4fad1...

Crash ↯

feedback

Execute

8

/31

Affects the specification

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Protocol vulnerabilities 
(e.g., authentication violation)

State-machine 
vulnerabilities

DY formal verification

HeartBleed

3SHAKE

Gnu's GotoFail

WinShock
SKIP

CVE-2021-3449

DROWN

POODLE
FREAK

CVE-2022-25640Apple’s GotoFail

LOGJAM

CVE-2022-25638

Retrospective of TLS Failures 2014-2022

9

CloudBleed

/31

Affects the specification

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Protocol vulnerabilities 
(e.g., authentication violation)

State-machine 
vulnerabilities

Requires message flow

modifications

DY formal verification

HeartBleed

3SHAKE

Gnu's GotoFail

WinShock
SKIP

CVE-2021-3449

DROWN

POODLE
FREAK

CVE-2022-25640Apple’s GotoFail

LOGJAM

CVE-2022-25638

Retrospective of TLS Failures 2014-2022

9

CloudBleed

/31

Affects the specification

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Requires structural modifications 
to messages

Protocol vulnerabilities 
(e.g., authentication violation)

State-machine 
vulnerabilities

Requires message flow

modifications

DY formal verification

HeartBleed

3SHAKE

Gnu's GotoFail

WinShock
SKIP

CVE-2021-3449

DROWN

POODLE
FREAK

CVE-2022-25640Apple’s GotoFail

LOGJAM

CVE-2022-25638

Retrospective of TLS Failures 2014-2022

9

CloudBleed

/31

Affects the specification

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Requires structural modifications 
to messages

Protocol vulnerabilities 
(e.g., authentication violation)

State-machine 
vulnerabilities

Requires message flow

modifications

Bit-Level 
Fuzzers  

e.g., AFLnet

DY formal verification

HeartBleed

3SHAKE

Gnu's GotoFail

WinShock
SKIP

CVE-2021-3449

DROWN

POODLE
FREAK

CVE-2022-25640Apple’s GotoFail

LOGJAM

CVE-2022-25638

Retrospective of TLS Failures 2014-2022

9

CloudBleed

/31

Affects the specification

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Requires structural modifications 
to messages

Protocol vulnerabilities 
(e.g., authentication violation)

State-machine 
vulnerabilities

Requires message flow

modifications

Bit-Level 
Fuzzers  

e.g., AFLnet

DY formal verification

StateMachine
Fuzzers

HeartBleed

3SHAKE

Gnu's GotoFail

WinShock
SKIP

CVE-2021-3449

DROWN

POODLE
FREAK

CVE-2022-25640Apple’s GotoFail

LOGJAM

CVE-2022-25638

Retrospective of TLS Failures 2014-2022

9

CloudBleed

/31

State-Machine-based Fuzzers

10

/31

State-Machine-based Fuzzers

• State-machine fuzzers/learners where:

• Input state = state-machine model: e.g., finite alphabet, automaton

• Test-case = series of actions (from alphabet), e.g., ClientHello, ServerHello 

10

/31

State-Machine-based Fuzzers

• State-machine fuzzers/learners where:

• Input state = state-machine model: e.g., finite alphabet, automaton

• Test-case = series of actions (from alphabet), e.g., ClientHello, ServerHello 

+ Captures protocol vulnerabilities corresponding to state-machine violations in
implementations, e.g., [22-25640] SkipVerify (auth. bypass with CertInfo but wo/ Cert)

10

/31

State-Machine-based Fuzzers

• State-machine fuzzers/learners where:

• Input state = state-machine model: e.g., finite alphabet, automaton

• Test-case = series of actions (from alphabet), e.g., ClientHello, ServerHello 

+ Captures protocol vulnerabilities corresponding to state-machine violations in
implementations, e.g., [22-25640] SkipVerify (auth. bypass with CertInfo but wo/ Cert)

- Reachability: no (structural) message modifications (except finite built-in modifs)  
 ☞ does not capture the class of logical attacks 
- Detection: manual+incomplete vulnerability detections (memory/protocol vulns)

10

/31

Affects the specification

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Requires structural modifications 
to messages

Protocol vulnerabilities 
(e.g., authentication violation)

State-machine 
vulnerabilities

Requires message flow 
modifications

Bit-Level 
Fuzzers  

e.g., AFLnet
StateMachine

Fuzzers

DY formal verification

HeartBleed

3SHAKE

RenegotiationGnu's GotoFail

WinShock

CVE-2022-25638

SKIP

CVE-2021-3449

DROWN

POODLE

CVE-2022-25640Apple’s GotoFail

CloudBleed

LOGJAM

FREAK

Retrospective of TLS Failures 2014-2022

11

/31

Affects the specification

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Requires structural modifications 
to messages

Protocol vulnerabilities 
(e.g., authentication violation)

State-machine 
vulnerabilities

Requires message flow 
modifications

Bit-Level 
Fuzzers  

e.g., AFLnet
StateMachine

Fuzzers

DY formal verification

DY Fuzzing

HeartBleed

3SHAKE

RenegotiationGnu's GotoFail

WinShock

CVE-2022-25638

SKIP

CVE-2021-3449

DROWN

POODLE

CVE-2022-25640Apple’s GotoFail

CloudBleed

LOGJAM

FREAK

Retrospective of TLS Failures 2014-2022

11

/31

Affects the specification

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Requires structural modifications 
to messages

Protocol vulnerabilities 
(e.g., authentication violation)

State-machine 
vulnerabilities

Requires message flow 
modifications

Bit-Level 
Fuzzers  

e.g., AFLnet
StateMachine

Fuzzers

DY formal verification

DY Fuzzing

HeartBleed

3SHAKE

Renegotiation

CVE-2022-39173 (us)

CVE-2022-38153 (us)

Gnu's GotoFail

WinShock

CVE-2022-25638

CVE-2022-4295 (us)

CVE-2022-38152 (us)

SKIP

CVE-2021-3449

DROWN

POODLE

CVE-2022-25640Apple’s GotoFail

CloudBleed

LOGJAM

FREAK

Retrospective of TLS Failures 2014-2022

11

/31

Affects the specification

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Requires structural modifications 
to messages

Protocol vulnerabilities 
(e.g., authentication violation)

State-machine 
vulnerabilities

Requires message flow 
modifications

Bit-Level 
Fuzzers  

e.g., AFLnet
StateMachine

Fuzzers

DY formal verification

DY Fuzzing

HeartBleed

3SHAKE

Renegotiation

CVE-2022-39173 (us)

CVE-2022-38153 (us)

Gnu's GotoFail

WinShock

CVE-2022-25638

CVE-2022-4295 (us)

CVE-2022-38152 (us)

SKIP

CVE-2021-3449

DROWN

POODLE

CVE-2022-25640Apple’s GotoFail

CloudBleed

LOGJAM

FREAKFREAK* CVE-2022-25638

CVE-2021-3449

CVE-2022-25640

Retrospective of TLS Failures 2014-2022

11

DY Fuzzing Design

/31

DY Fuzzing: Big Picture
DY Fuzzer = DY attacker in a fuzzing loop

13

/31

DY Fuzzing: Big Picture

• We build on "messages as formal terms" and assume a term algebra 

DY Fuzzer = DY attacker in a fuzzing loop

13

/31

DY Fuzzing: Big Picture

• We build on "messages as formal terms" and assume a term algebra 

• Test cases = symbolic traces expressing DY attacker’s actions 
 
tr := out(r, w).tr : r is a role (client/server) and w is a variable (attacker knows) 
 | in(r, R).tr : R is a term in the term algebra (computed by attacker) 
 | 0

DY Fuzzer = DY attacker in a fuzzing loop

13

/31

DY Fuzzing: Big Picture

• We build on "messages as formal terms" and assume a term algebra 

• Test cases = symbolic traces expressing DY attacker’s actions 
 
tr := out(r, w).tr : r is a role (client/server) and w is a variable (attacker knows) 
 | in(r, R).tr : R is a term in the term algebra (computed by attacker) 
 | 0

Example: tra=out(cl,w1).in(serv,w1).out(serv,w2).in(cl, sign(extract(w2), ska)).0

DY Fuzzer = DY attacker in a fuzzing loop

13

/31

DY Fuzzer = MITM DY attackerDY Fuzzing: Big Picture

tr := out(r, w).tr
 | in(r, R).tr
 | 0

14

/31

DY Fuzzer = MITM DY attacker

Symbolic traces (tr) are « concretized » with the PUT (or any ref. implem.)

DY Fuzzing: Big Picture

tr := out(r, w).tr
 | in(r, R).tr
 | 0

14

/31

DY Fuzzer = MITM DY attacker

Symbolic traces (tr) are « concretized » with the PUT (or any ref. implem.)
1. out(r, w) ☞ call PUT role function to read bitstring bw from output buffer of r

DY Fuzzing: Big Picture

tr := out(r, w).tr
 | in(r, R).tr
 | 0

14

/31

DY Fuzzer = MITM DY attacker

Symbolic traces (tr) are « concretized » with the PUT (or any ref. implem.)
1. out(r, w) ☞ call PUT role function to read bitstring bw from output buffer of r

2. in(r, R) ☞
a. call ref/PUT crypto functions to evaluate R into a bitstring bR

DY Fuzzing: Big Picture

tr := out(r, w).tr
 | in(r, R).tr
 | 0

14

/31

DY Fuzzer = MITM DY attacker

Symbolic traces (tr) are « concretized » with the PUT (or any ref. implem.)
1. out(r, w) ☞ call PUT role function to read bitstring bw from output buffer of r

2. in(r, R) ☞
a. call ref/PUT crypto functions to evaluate R into a bitstring bR

E.g., eval(sign(R’,sk)) = RSAPUT(eval(R’),bsk)
 eval(w) = bw
 bsk is obtained by calling genKeyPUT()

DY Fuzzing: Big Picture

tr := out(r, w).tr
 | in(r, R).tr
 | 0

14

/31

DY Fuzzer = MITM DY attacker

Symbolic traces (tr) are « concretized » with the PUT (or any ref. implem.)
1. out(r, w) ☞ call PUT role function to read bitstring bw from output buffer of r

2. in(r, R) ☞
a. call ref/PUT crypto functions to evaluate R into a bitstring bR

E.g., eval(sign(R’,sk)) = RSAPUT(eval(R’),bsk)
 eval(w) = bw
 bsk is obtained by calling genKeyPUT()

b. call PUT role function to write bR onto input buffer of r + make r progress

DY Fuzzing: Big Picture

tr := out(r, w).tr
 | in(r, R).tr
 | 0

14

/31

DY Fuzzer = MITM DY attacker

Symbolic traces (tr) are « concretized » with the PUT (or any ref. implem.)
1. out(r, w) ☞ call PUT role function to read bitstring bw from output buffer of r

2. in(r, R) ☞
a. call ref/PUT crypto functions to evaluate R into a bitstring bR

E.g., eval(sign(R’,sk)) = RSAPUT(eval(R’),bsk)
 eval(w) = bw
 bsk is obtained by calling genKeyPUT()

b. call PUT role function to write bR onto input buffer of r + make r progress

Executor (1 + 2.b): require a lightweight instrumentation of the PUT 
Mapper (2.a): requires a per-protocol « executable term-algebra »

DY Fuzzing: Big Picture

tr := out(r, w).tr
 | in(r, R).tr
 | 0

14

/31

DY Fuzzer = MITM DY attacker

Symbolic traces (tr) are « concretized » with the PUT (or any ref. implem.)
1. out(r, w) ☞ call PUT role function to read bitstring bw from output buffer of r

2. in(r, R) ☞
a. call ref/PUT crypto functions to evaluate R into a bitstring bR

E.g., eval(sign(R’,sk)) = RSAPUT(eval(R’),bsk)
 eval(w) = bw
 bsk is obtained by calling genKeyPUT()

b. call PUT role function to write bR onto input buffer of r + make r progress

Executor (1 + 2.b): require a lightweight instrumentation of the PUT 
Mapper (2.a): requires a per-protocol « executable term-algebra »

DY Fuzzing: Big Picture

tr := out(r, w).tr
 | in(r, R).tr
 | 0

☞ Do not require a protocol DY model but only a DY attacker model (i.e., term algebra)
14

/31

DY Fuzzer components

LibAFL components (we build on)

15

/31

DY Fuzzer components

LibAFL components (we build on)

⭐DY

• State⭐: test-cases = DY traces, 
 seeds corpus = happy flows

15

/31

DY Fuzzer components

LibAFL components (we build on)

⭐DY

• State⭐: test-cases = DY traces, 
 seeds corpus = happy flows

• Scheduler: FIFO

15

/31

DY Fuzzer components

LibAFL components (we build on)

⭐DY

⭐DY

• State⭐: test-cases = DY traces, 
 seeds corpus = happy flows

• Scheduler: FIFO

• Mutator⭐: custom trace mutations

15

/31

DY Fuzzer components

LibAFL components (we build on)

⭐DY

⭐DY

⭐DY

• State⭐: test-cases = DY traces, 
 seeds corpus = happy flows

• Scheduler: FIFO

• Mutator⭐: custom trace mutations

• Harness⭐: Mapper + Executor + Claims

15

/31

DY Fuzzer components

LibAFL components (we build on)

⭐DY

⭐DY

⭐DY

⭐DY

• State⭐: test-cases = DY traces, 
 seeds corpus = happy flows

• Scheduler: FIFO

• Mutator⭐: custom trace mutations

• Harness⭐: Mapper + Executor + Claims

• Obj. Oracle⭐: DY security properties⭐ 
(e.g., agreement) + ASAN (memory vulns.)

15

/31

DY Fuzzer components

LibAFL components (we build on)

⭐DY

⭐DY

⭐DY

⭐DY

• State⭐: test-cases = DY traces, 
 seeds corpus = happy flows

• Scheduler: FIFO

• Mutator⭐: custom trace mutations

• Harness⭐: Mapper + Executor + Claims

• Obj. Oracle⭐: DY security properties⭐ 
(e.g., agreement) + ASAN (memory vulns.)

• Feedback: PUT code-coverage

15

/31

DY Fuzzer components

LibAFL components (we build on)

⭐DY

⭐DY

⭐DY

⭐DY

• State⭐: test-cases = DY traces, 
 seeds corpus = happy flows

• Scheduler: FIFO

• Mutator⭐: custom trace mutations

• Harness⭐: Mapper + Executor + Claims

• Obj. Oracle⭐: DY security properties⭐ 
(e.g., agreement) + ASAN (memory vulns.)

• Feedback: PUT code-coverage

15

/31

DY mutations

tr := out(r, w).tr
 | in(r, R).tr
 | 0

16

/31

DY mutations
Action-level Mutations

• Skip: remove random action (in/out) tr := out(r, w).tr
 | in(r, R).tr
 | 0

16

/31

DY mutations
Action-level Mutations

• Skip: remove random action (in/out)

• Repeat: randomly copy and insert an action
☞ Already enough to capture some state-machine vulns such as auth. bypass

tr := out(r, w).tr
 | in(r, R).tr
 | 0

16

/31

DY mutations
Action-level Mutations

• Skip: remove random action (in/out)

• Repeat: randomly copy and insert an action
☞ Already enough to capture some state-machine vulns such as auth. bypass

Term-level Mutations⭐

• Swap: Swap two (sub-)terms in the trace

tr := out(r, w).tr
 | in(r, R).tr
 | 0

16

/31

DY mutations
Action-level Mutations

• Skip: remove random action (in/out)

• Repeat: randomly copy and insert an action
☞ Already enough to capture some state-machine vulns such as auth. bypass

Term-level Mutations⭐

• Swap: Swap two (sub-)terms in the trace
• Generate: Replace a term by a random one

tr := out(r, w).tr
 | in(r, R).tr
 | 0

16

/31

DY mutations
Action-level Mutations

• Skip: remove random action (in/out)

• Repeat: randomly copy and insert an action
☞ Already enough to capture some state-machine vulns such as auth. bypass

Term-level Mutations⭐

• Swap: Swap two (sub-)terms in the trace
• Generate: Replace a term by a random one
• Replace-Match: Swap two function symbols in the trace (e.g., SHA2 <-> SHA3)

tr := out(r, w).tr
 | in(r, R).tr
 | 0

16

/31

DY mutations
Action-level Mutations

• Skip: remove random action (in/out)

• Repeat: randomly copy and insert an action
☞ Already enough to capture some state-machine vulns such as auth. bypass

Term-level Mutations⭐

• Swap: Swap two (sub-)terms in the trace
• Generate: Replace a term by a random one
• Replace-Match: Swap two function symbols in the trace (e.g., SHA2 <-> SHA3)
• Replace-Reuse: Replace a (sub-)term by another (sub-)term in the trace
• Replace-and-Lift: Replace a (sub-)term by one of its sub-terms

☞ Mutations are conditioned: well-typed (avoid systematic failures) + size-bounds

tr := out(r, w).tr
 | in(r, R).tr
 | 0

16

/31

DY Fuzzer components

LibAFL components (we build on)

17

/31

DY Fuzzer components

LibAFL components (we build on)

⭐DY

⭐DY

⭐DY

⭐DY

• State⭐: test-cases = DY traces, 
 seeds corpus = happy flows

• Scheduler: FIFO

• Mutator⭐: custom trace mutations

• Harness⭐: Mapper + Executor + Claims

• Obj. Oracle⭐: DY security properties⭐ 
(e.g., agreement) + ASAN (memory vulns.)

• Feedback: PUT code-coverage

17

/31

DY Fuzzer components

LibAFL components (we build on)

⭐DY

⭐DY

⭐DY

⭐DY

• State⭐: test-cases = DY traces, 
 seeds corpus = happy flows

• Scheduler: FIFO

• Mutator⭐: custom trace mutations

• Harness⭐: Mapper + Executor + Claims

• Obj. Oracle⭐: DY security properties⭐ 
(e.g., agreement) + ASAN (memory vulns.)

• Feedback: PUT code-coverage

17

/31

DY Objective Oracle

18

/31

DY Objective Oracle
Memory-related objective oracle
• Classical with bit-level fuzzing: code instrumentation with AddressSanitizer (ASan)

18

/31

DY Objective Oracle
Memory-related objective oracle
• Classical with bit-level fuzzing: code instrumentation with AddressSanitizer (ASan)

DY Security properties ⭐

• Introduce claims triggered by roles executing the PUT (part of Harness/Executor) 
E.g., agreement claims: Agr(client, pk, m)@i client believes to have agreed with server with pk on m @ ith action

+

18

/31

DY Objective Oracle
Memory-related objective oracle
• Classical with bit-level fuzzing: code instrumentation with AddressSanitizer (ASan)

DY Security properties ⭐

• Introduce claims triggered by roles executing the PUT (part of Harness/Executor) 
E.g., agreement claims: Agr(client, pk, m)@i client believes to have agreed with server with pk on m @ ith action

• Classical in DY models: security properties expressed as 1st-order formula 
E.g., agreement property ∀pk,m: Agr(client, pk, m)@i ⇒ Run(server, pk, m)@j ⋀ j<i

+

18

/31

DY Objective Oracle
Memory-related objective oracle
• Classical with bit-level fuzzing: code instrumentation with AddressSanitizer (ASan)

DY Security properties ⭐

• Introduce claims triggered by roles executing the PUT (part of Harness/Executor) 
E.g., agreement claims: Agr(client, pk, m)@i client believes to have agreed with server with pk on m @ ith action

• Classical in DY models: security properties expressed as 1st-order formula 
E.g., agreement property ∀pk,m: Agr(client, pk, m)@i ⇒ Run(server, pk, m)@j ⋀ j<i

• DY Objective oracle also checks DY security properties

• Gather all the claims throughout traces executions at the PUT

• Check all the DY security properties (where terms are concretized to bitstrings)

+

18

tlspuffin Implementation

/31

tlspuffin: a full-fledge DY fuzzer

20

/31

tlspuffin: a full-fledge DY fuzzer
• Open-source project written in Rust (16k LoC) (tlspuffin on Github)

20

/31

tlspuffin: a full-fledge DY fuzzer
• Open-source project written in Rust (16k LoC) (tlspuffin on Github)

• Built on LibAFL, a modular library to build fuzzers (+ new/custom components⭐)

20

/31

tlspuffin: a full-fledge DY fuzzer
• Open-source project written in Rust (16k LoC) (tlspuffin on Github)

• Built on LibAFL, a modular library to build fuzzers (+ new/custom components⭐)

• In-memory buffers, delightfully parallel, fast (700 execs/s/core)

20

/31

tlspuffin: a full-fledge DY fuzzer
• Open-source project written in Rust (16k LoC) (tlspuffin on Github)

• Built on LibAFL, a modular library to build fuzzers (+ new/custom components⭐)

• In-memory buffers, delightfully parallel, fast (700 execs/s/core)

• For TLS: 189 function symbols, harnessed PUTs: OpenSSL, WolfSSL, LibreSSL

20

/31

tlspuffin: a full-fledge DY fuzzer
• Open-source project written in Rust (16k LoC) (tlspuffin on Github)

• Built on LibAFL, a modular library to build fuzzers (+ new/custom components⭐)

• In-memory buffers, delightfully parallel, fast (700 execs/s/core)

• For TLS: 189 function symbols, harnessed PUTs: OpenSSL, WolfSSL, LibreSSL

• Beyond fuzzing: Connect to a PUT through TCP (easier to connect to new PUTs) 
+ Traces are: executable, serializable, pretty-printable (as trees), concretizable (for PoC)

20

/31

tlspuffin: a full-fledge DY fuzzer
• Open-source project written in Rust (16k LoC) (tlspuffin on Github)

• Built on LibAFL, a modular library to build fuzzers (+ new/custom components⭐)

• In-memory buffers, delightfully parallel, fast (700 execs/s/core)

• For TLS: 189 function symbols, harnessed PUTs: OpenSSL, WolfSSL, LibreSSL

• Beyond fuzzing: Connect to a PUT through TCP (easier to connect to new PUTs) 
+ Traces are: executable, serializable, pretty-printable (as trees), concretizable (for PoC)

• Optimizations: fragmented output, queries for variables, transcript extraction

20

/31

Puffin Modular Architecture

21

/31

Puffin Modular Architecture
Puffin
•Terms (based on term signature)

•Traces + Domain-Specific Language

•Mutations

•Objective oracle (based on DY properties)

•Fuzzing-loop, CLI with all commands

21

/31

Puffin Modular Architecture
Puffin
•Terms (based on term signature)

•Traces + Domain-Specific Language

•Mutations

•Objective oracle (based on DY properties)

•Fuzzing-loop, CLI with all commands

Once-for-all 
6k LoC

Per protocol (here TLS)

Mapper most difficult 

8k LoC

tlspuffin
•Term signature

•Mapper: term → bitstrings

•DY security properties

•Seed corpus with DSL

21

/31

Puffin Modular Architecture

OpenSSL Harness
•Executor interface

•Claim extractions

Puffin
•Terms (based on term signature)

•Traces + Domain-Specific Language

•Mutations

•Objective oracle (based on DY properties)

•Fuzzing-loop, CLI with all commands

Once-for-all 
6k LoC

Per protocol (here TLS)

Mapper most difficult 

8k LoC

Per PUT, quite lightweight 
+ TCP mode 

500 LoC

tlspuffin
•Term signature

•Mapper: term → bitstrings

•DY security properties

•Seed corpus with DSL

21

/31

Puffin Modular Architecture

OpenSSL Harness
•Executor interface

•Claim extractions

WolfSSL Harness

Puffin
•Terms (based on term signature)

•Traces + Domain-Specific Language

•Mutations

•Objective oracle (based on DY properties)

•Fuzzing-loop, CLI with all commands

Once-for-all 
6k LoC

Per protocol (here TLS)

Mapper most difficult 

8k LoC

Per PUT, quite lightweight 
+ TCP mode 

500 LoC

tlspuffin
•Term signature

•Mapper: term → bitstrings

•DY security properties

•Seed corpus with DSL

21

/31

Puffin Modular Architecture

OpenSSL Harness
•Executor interface

•Claim extractions

WolfSSL Harness

Puffin
•Terms (based on term signature)

•Traces + Domain-Specific Language

•Mutations

•Objective oracle (based on DY properties)

•Fuzzing-loop, CLI with all commands

Once-for-all 
6k LoC

Per protocol (here TLS)

Mapper most difficult 

8k LoC

Per PUT, quite lightweight 
+ TCP mode 

500 LoC

tlspuffin
•Term signature

•Mapper: term → bitstrings

•DY security properties

•Seed corpus with DSL

OpenSSH Harness

SSHpuffin
•……..

21

tlspuffin Results

/31

tlspuffin findings 👺

23

/31

tlspuffin findings 👺
• We selected a small

benchmark suite: recent
logical attacks found on
OpenSSL (most used) and
WolfSSL (IoT)

23

/31

tlspuffin findings 👺
• We selected a small

benchmark suite: recent
logical attacks found on
OpenSSL (most used) and
WolfSSL (IoT)

• Found by tlspuffin in hours
or seconds (SKIP),
systematic reproducibility!

23

/31

tlspuffin findings 👺
• We selected a small

benchmark suite: recent
logical attacks found on
OpenSSL (most used) and
WolfSSL (IoT)

• Found by tlspuffin in hours
or seconds (SKIP),
systematic reproducibility!

• We ran fuzzing campaigns
on the harnessed PUTs and
found 4 new CVEs 
☞Not found by other fuzzers

!!!
!

!

23

/31

Affects the specification

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Requires structural modifications 
to messages

Protocol vulnerabilities 
(e.g., authentication violation)

State-machine 
vulnerabilities

Requires message flow 
modifications

Bit-Level 
Fuzzers  

e.g., AFLnet
StateMachine

Fuzzers

DY formal verification

Retrospective of TLS Failures 2014-2022

24

/31

Affects the specification

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Requires structural modifications 
to messages

Protocol vulnerabilities 
(e.g., authentication violation)

State-machine 
vulnerabilities

Requires message flow 
modifications

Bit-Level 
Fuzzers  

e.g., AFLnet
StateMachine

Fuzzers

DY formal verification

DY Fuzzing

Retrospective of TLS Failures 2014-2022

24

/31

Affects the specification

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Requires structural modifications 
to messages

Protocol vulnerabilities 
(e.g., authentication violation)

State-machine 
vulnerabilities

Requires message flow 
modifications

Bit-Level 
Fuzzers  

e.g., AFLnet
StateMachine

Fuzzers

DY formal verification

DY Fuzzing

CVE-2022-39173 (us)

CVE-2022-38153 (us)

CVE-2022-4295 (us)

CVE-2022-38152 (us)

Retrospective of TLS Failures 2014-2022

24

/31

Affects the specification

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Requires structural modifications 
to messages

Protocol vulnerabilities 
(e.g., authentication violation)

State-machine 
vulnerabilities

Requires message flow 
modifications

Bit-Level 
Fuzzers  

e.g., AFLnet
StateMachine

Fuzzers

DY formal verification

DY Fuzzing

CVE-2022-39173 (us)

CVE-2022-38153 (us)

CVE-2022-25638

CVE-2022-4295 (us)

CVE-2022-38152 (us)

CVE-2021-3449

FREAK*

CVE-2022-25640

Retrospective of TLS Failures 2014-2022

24

/31

Affects the specification

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Requires structural modifications 
to messages

Protocol vulnerabilities 
(e.g., authentication violation)

State-machine 
vulnerabilities

Requires message flow 
modifications

Bit-Level 
Fuzzers  

e.g., AFLnet
StateMachine

Fuzzers

DY formal verification

DY Fuzzing

HeartBleed

3SHAKE

Renegotiation

CVE-2022-39173 (us)

CVE-2022-38153 (us)

Gnu's GotoFail

WinShock

CVE-2022-25638

CVE-2022-4295 (us)

CVE-2022-38152 (us)

SKIP

CVE-2021-3449

DROWN

POODLE
FREAK*

CVE-2022-25640Apple’s GotoFail

CloudBleed

LOGJAM

Retrospective of TLS Failures 2014-2022

24

/31

Bug triaging

1. Objective traces are stored on disk during fuzzing

2. Execute against clean slate WolfSSL through TCP

3. Plot the trace, inspect the attacker terms, could modify and re-execute 
 
☞ Understand the attack requirements

4. gdb/ldb tlspuffin+WolfSSL execute trace (action-by-action, step-by-step) 
 
☞ Understand the attack root causes

25

/31

Root causes of CVE-2022-39173 (WolfSSL, CVSS high)

26

/31

1. Attacker acting as client performs a full TLS handshake, establishing a Pre-Shared-Key (PSK)

Root causes of CVE-2022-39173 (WolfSSL, CVSS high)

26

/31

1. Attacker acting as client performs a full TLS handshake, establishing a Pre-Shared-Key (PSK)
2. Forges a malicious ClientHello([c;..;c]) message such that

Root causes of CVE-2022-39173 (WolfSSL, CVSS high)

26

/31

1. Attacker acting as client performs a full TLS handshake, establishing a Pre-Shared-Key (PSK)
2. Forges a malicious ClientHello([c;..;c]) message such that

(a) it resumes previous session with PSK (needs to apply decrypt, hash, signature) and
(b) It has as list of supported cipher suites with duplicates of c (say n times)

Root causes of CVE-2022-39173 (WolfSSL, CVSS high)

26

/31

1. Attacker acting as client performs a full TLS handshake, establishing a Pre-Shared-Key (PSK)
2. Forges a malicious ClientHello([c;..;c]) message such that

(a) it resumes previous session with PSK (needs to apply decrypt, hash, signature) and
(b) It has as list of supported cipher suites with duplicates of c (say n times)

☞ Server calls refineSuites to update suitesS (ciphers offered both by client and server) bc. of resumption
☞ Flaw 1: actually computes « multiset-intersection » so suitesS will contain duplicates of c (say k times)
☞ No big deal because suitesS initially had no duplicate so: k = n ≤ |suitesC| ≤ MAX_SZ = 150 

Root causes of CVE-2022-39173 (WolfSSL, CVSS high)

26

/31

1. Attacker acting as client performs a full TLS handshake, establishing a Pre-Shared-Key (PSK)
2. Forges a malicious ClientHello([c;..;c]) message such that

(a) it resumes previous session with PSK (needs to apply decrypt, hash, signature) and
(b) It has as list of supported cipher suites with duplicates of c (say n times)

☞ Server calls refineSuites to update suitesS (ciphers offered both by client and server) bc. of resumption
☞ Flaw 1: actually computes « multiset-intersection » so suitesS will contain duplicates of c (say k times)
☞ No big deal because suitesS initially had no duplicate so: k = n ≤ |suitesC| ≤ MAX_SZ = 150 

Root causes of CVE-2022-39173 (WolfSSL, CVSS high)

How WolfSSL implements ∩ with refineSuites(suitesC)@tls13.c:4355

// suitesS initially with offered suites, MAX_SZ allocated

byte suites[MAX_SZ]; int suiteSz = 0; // supposed to compute suitesS ∩ suitesC

for (i = 0; i < suitesS.size; i += 1) {
 for (j = 0; j < suitesC.size; j += 1) { // suitesC.size <= MAX_SZ
 if (suitesS->suites[i] == suitesC->suites[j]) {
 suites[suiteSz++] = suitesC->suites[j]; } } }
XMEMCPY(suitesS, &suites, sizeof(suites));  

26

/31

1. Attacker acting as client performs a full TLS handshake, establishing a Pre-Shared-Key (PSK)
2. Forges a malicious ClientHello([c;..;c]) message such that

(a) it resumes previous session with PSK (needs to apply decrypt, hash, signature) and
(b) It has as list of supported cipher suites with duplicates of c (say n times)

☞ Server calls refineSuites to update suitesS (ciphers offered both by client and server) bc. of resumption
☞ Flaw 1: actually computes « multiset-intersection » so suitesS will contain duplicates of c (say k times)
☞ No big deal because suitesS initially had no duplicate so: k = n ≤ |suitesC| ≤ MAX_SZ = 150 

Root causes of CVE-2022-39173 (WolfSSL, CVSS high)

26

/31

1. Attacker acting as client performs a full TLS handshake, establishing a Pre-Shared-Key (PSK)
2. Forges a malicious ClientHello([c;..;c]) message such that

(a) it resumes previous session with PSK (needs to apply decrypt, hash, signature) and
(b) It has as list of supported cipher suites with duplicates of c (say n times)

☞ Server calls refineSuites to update suitesS (ciphers offered both by client and server) bc. of resumption
☞ Flaw 1: actually computes « multiset-intersection » so suitesS will contain duplicates of c (say k times)
☞ No big deal because suitesS initially had no duplicate so: k = n ≤ |suitesC| ≤ MAX_SZ = 150 

(c) Is ill-formed and will be rejected but late (after call to refineSuites), mess with supportGroupExtension

☞ Server rejects it and sends a HelloRetryRequest but
☞ Flaw 2: side-effects of refineSuites are not reverted
☞ From now on, refineSuites invariant is broken: suitesS contains n duplicates of c 

Root causes of CVE-2022-39173 (WolfSSL, CVSS high)

26

/31

1. Attacker acting as client performs a full TLS handshake, establishing a Pre-Shared-Key (PSK)
2. Forges a malicious ClientHello([c;..;c]) message such that

(a) it resumes previous session with PSK (needs to apply decrypt, hash, signature) and
(b) It has as list of supported cipher suites with duplicates of c (say n times)

☞ Server calls refineSuites to update suitesS (ciphers offered both by client and server) bc. of resumption
☞ Flaw 1: actually computes « multiset-intersection » so suitesS will contain duplicates of c (say k times)
☞ No big deal because suitesS initially had no duplicate so: k = n ≤ |suitesC| ≤ MAX_SZ = 150 

(c) Is ill-formed and will be rejected but late (after call to refineSuites), mess with supportGroupExtension

☞ Server rejects it and sends a HelloRetryRequest but
☞ Flaw 2: side-effects of refineSuites are not reverted
☞ From now on, refineSuites invariant is broken: suitesS contains n duplicates of c 

3. Send ClientHello([c;..;c]) again, refineSuites is called again, the resulting buffer suites that contains 
k2 = n2 ciphers c is copied into suitesS

☞ For n = 13, we already overwrite the suitesS buffer allocated on MAX_ciphers_list_length = 150

Root causes of CVE-2022-39173 (WolfSSL, CVSS high)

26

/31

1. Attacker acting as client performs a full TLS handshake, establishing a Pre-Shared-Key (PSK)
2. Forges a malicious ClientHello([c;..;c]) message such that

(a) it resumes previous session with PSK (needs to apply decrypt, hash, signature) and
(b) It has as list of supported cipher suites with duplicates of c (say n times)

☞ Server calls refineSuites to update suitesS (ciphers offered both by client and server) bc. of resumption
☞ Flaw 1: actually computes « multiset-intersection » so suitesS will contain duplicates of c (say k times)
☞ No big deal because suitesS initially had no duplicate so: k = n ≤ |suitesC| ≤ MAX_SZ = 150 

(c) Is ill-formed and will be rejected but late (after call to refineSuites), mess with supportGroupExtension

☞ Server rejects it and sends a HelloRetryRequest but
☞ Flaw 2: side-effects of refineSuites are not reverted
☞ From now on, refineSuites invariant is broken: suitesS contains n duplicates of c 

3. Send ClientHello([c;..;c]) again, refineSuites is called again, the resulting buffer suites that contains 
k2 = n2 ciphers c is copied into suitesS

☞ For n = 13, we already overwrite the suitesS buffer allocated on MAX_ciphers_list_length = 150

Root causes of CVE-2022-39173 (WolfSSL, CVSS high)

 
An overflow on the stack of max 44700 bytes (controlled by n).

☞ Therefore, large portions of the stack can get overwritten, including return addresses (confirmed)
☞ Potential RCE (unconfirmed)
☞ Potential for negotiating ciphers that server should reject (downgrade) 

26

DY Fuzzing Future Work

/31

Future Work - Evaluation

28

/31

Future Work - Evaluation
• tlspuffin always found the new CVEs
• state-of-the art competitive fuzzers never found any of them
We can explain this with qualitative evidences but quantitative evidences are hard to obtain

28

/31

Future Work - Evaluation
• tlspuffin always found the new CVEs
• state-of-the art competitive fuzzers never found any of them
We can explain this with qualitative evidences but quantitative evidences are hard to obtain

• Code-coverage is a poor metric 
 
 
 
E.g., client accepting a legitimate server’s certificate =coverage accepting illegitimate cert. 

 A statement reached from an attack state is similarly counted as if reached from the happy flow

28

/31

Future Work - Evaluation
• tlspuffin always found the new CVEs
• state-of-the art competitive fuzzers never found any of them
We can explain this with qualitative evidences but quantitative evidences are hard to obtain

• Code-coverage is a poor metric 
 
 
 
E.g., client accepting a legitimate server’s certificate =coverage accepting illegitimate cert. 

• Yet, some insights by manual analysis of the diff-coverage (tlspuffin vs. AFLnet)
• tlspuffin explores more extensions requiring structured messages approach (crypto)

(e.g., mutations UNDER encryption/signature)
• Other fuzzers beat tlspuffin code-coverage for discovering some functionalities in

ClientHello (e.g., discover a lot more ciphers yet without being able to then use them)

 A statement reached from an attack state is similarly counted as if reached from the happy flow

28

/31

Future Work (cont.)

29

/31

Future Work (cont.)
DY coverage: code-coverage is currently a bottleneck (prone to exhaustion)
→ Need for a domain-specific DY-based notion of coverage 
 Hitting the same code with different adversarial behaviors should not be considered the same  
→ Combine with a proxy for how close a trace is to an attack trace (use Tamarin?) 
 Could be useful to incentivize better term generation and some attack scenarios
→ Combine and find a balance with code-based coverage (specified vs. implemented
functionalities)

29

/31

Future Work (cont.)
DY coverage: code-coverage is currently a bottleneck (prone to exhaustion)
→ Need for a domain-specific DY-based notion of coverage 
 Hitting the same code with different adversarial behaviors should not be considered the same  
→ Combine with a proxy for how close a trace is to an attack trace (use Tamarin?) 
 Could be useful to incentivize better term generation and some attack scenarios
→ Combine and find a balance with code-based coverage (specified vs. implemented
functionalities)

Improved objective oracle
• Differential fuzzing: save t as objective when WolfSSL(t) ≄ OpenSSL(t)

29

/31

Future Work (cont.)
DY coverage: code-coverage is currently a bottleneck (prone to exhaustion)
→ Need for a domain-specific DY-based notion of coverage 
 Hitting the same code with different adversarial behaviors should not be considered the same  
→ Combine with a proxy for how close a trace is to an attack trace (use Tamarin?) 
 Could be useful to incentivize better term generation and some attack scenarios
→ Combine and find a balance with code-based coverage (specified vs. implemented
functionalities)

Improved objective oracle
• Differential fuzzing: save t as objective when WolfSSL(t) ≄ OpenSSL(t)
• Or extend the oracle: more compromise scenarios, secrecy (abstraction,
deduction?), privacy (approx.?), functional correctness / a model

29

/31

Future Work (cont.)

30

/31

Future Work (cont.)

• Combine DY fuzzing with bit-level fuzzing (WIP): reach « deep states » with DY
attacker and then smash with some bit-level mutations 

30

/31

Future Work (cont.)

• Combine DY fuzzing with bit-level fuzzing (WIP): reach « deep states » with DY
attacker and then smash with some bit-level mutations 

• DY-based concolic testing: use DY verifiers to synthesize test cases that pass
“complex” conditions 

30

/31

Future Work (cont.)

• Combine DY fuzzing with bit-level fuzzing (WIP): reach « deep states » with DY
attacker and then smash with some bit-level mutations 

• DY-based concolic testing: use DY verifiers to synthesize test cases that pass
“complex” conditions 

• Apply DY fuzzing to more protocols and PUTs (e.g., SChannel, WPA, TelCo) 

30

/31

Future Work (cont.)

• Combine DY fuzzing with bit-level fuzzing (WIP): reach « deep states » with DY
attacker and then smash with some bit-level mutations 

• DY-based concolic testing: use DY verifiers to synthesize test cases that pass
“complex” conditions 

• Apply DY fuzzing to more protocols and PUTs (e.g., SChannel, WPA, TelCo) 

Long-Term
• (Partially) Automate Mapper and Harness → PUT-agnostic DY fuzzer
• Model extraction
• Connect further with DY verifiers (ProVerif, Tamarin, Sapic+)

30

/31

Summary of Contributions

31

/31

Summary of Contributions

1. A new approach to fuzzing cryptographic protocols  
connecting the DY formal approach with fuzzing  
→ captures for the first time the class of logical
attacks / DY attacker

2. DY Fuzzing design specification

3. tlspuffin: full-fledged, modular, efficient DY fuzzer
implementation for TLS

4. Evaluate tlspuffin on TLS libraries:

• (re)found seven vulnerabilities

• including four new ones (one critical, two high,
and one medium)

Preprint IACR 2023/057

Project ANR JCJC 
→ Looking for student/postdocs/engineers

31

Backup Slides

/31

Retrospective of TLS Failures 2019-2022
Affects the specification

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Requires structural modifications 
to messages

Protocol vulnerabilities 
(e.g., authentication violation)

State-machine 
vulnerabilities

Requires message flow 
modifications

Bit-Level 
Fuzzers  

e.g., AFLnet
StateMachine

Fuzzers

DY formal verification

HeartBleed

3SHAKE

RenegotiationGnu's GotoFail

WinShock

CVE-2022-25638

SKIP

CVE-2021-3449

DROWN

POODLE

CVE-2022-25640Apple’s GotoFail

CloudBleed

LOGJAM

FREAK

33

/31

Retrospective of TLS Failures 2019-2022
Affects the specification

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Requires structural modifications 
to messages

Protocol vulnerabilities 
(e.g., authentication violation)

State-machine 
vulnerabilities

Requires message flow 
modifications

Bit-Level 
Fuzzers  

e.g., AFLnet
StateMachine

Fuzzers

DY formal verification

DY Fuzzing

HeartBleed

3SHAKE

RenegotiationGnu's GotoFail

WinShock

CVE-2022-25638

SKIP

CVE-2021-3449

DROWN

POODLE

CVE-2022-25640Apple’s GotoFail

CloudBleed

LOGJAM

FREAK

33

/31

Retrospective of TLS Failures 2019-2022
Affects the specification

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Requires structural modifications 
to messages

Protocol vulnerabilities 
(e.g., authentication violation)

State-machine 
vulnerabilities

Requires message flow 
modifications

Bit-Level 
Fuzzers  

e.g., AFLnet
StateMachine

Fuzzers

DY formal verification

DY Fuzzing

HeartBleed

3SHAKE

Renegotiation

CVE-2022-39173 (us)

CVE-2022-38153 (us)

Gnu's GotoFail

WinShock

CVE-2022-25638

CVE-2022-4295 (us)

CVE-2022-38152 (us)

SKIP

CVE-2021-3449

DROWN

POODLE

CVE-2022-25640Apple’s GotoFail

CloudBleed

LOGJAM

FREAK

33

/31

Retrospective of TLS Failures 2019-2022
Affects the specification

Spatial and temporal memory bugs 
(e.g., buffer-overflow)

Requires structural modifications 
to messages

Protocol vulnerabilities 
(e.g., authentication violation)

State-machine 
vulnerabilities

Requires message flow 
modifications

Bit-Level 
Fuzzers  

e.g., AFLnet
StateMachine

Fuzzers

DY formal verification

DY Fuzzing

HeartBleed

3SHAKE

Renegotiation

CVE-2022-39173 (us)

CVE-2022-38153 (us)

Gnu's GotoFail

WinShock

CVE-2022-25638

CVE-2022-4295 (us)

CVE-2022-38152 (us)

SKIP

CVE-2021-3449

DROWN

POODLE

CVE-2022-25640Apple’s GotoFail

CloudBleed

LOGJAM

FREAKFREAK* CVE-2022-25638

CVE-2021-3449

CVE-2022-25640

33

/31

Seed Corpus

MITM

(Happy flow)

(Happy flow)

34

/31

Tlspuffin Terms Domain-Specific Language

35

/31

Tlspuffin Traces Domain-Specific Language

36

/31

Plotting Terms and Traces

37

/31

tlspuffin: a full-fledge DY fuzzer

38

/31

tlspuffin: a full-fledge DY fuzzer
• Open-source project written in Rust (16k LoC) (tlspuffin on Github)

• Built on LibAFL, a modular library to build fuzzers (+ new/custom components⭐)

• In-memory buffers, delightfully parallel, fast (700 execs/s/core)

• For TLS: 189 function symbols, harnessed PUTs: OpenSSL, WolfSSL, OpenSSL

• Beyond fuzzing: Connect to a PUT through TCP (easier to connect to new PUTs) 
+ Traces are: executable, serializable, pretty-printable (as trees), concretizable (for PoC)

• Optimizations:

• fragment outputs by extracting sub-messages → smaller terms

• queries for accessing output variable access → more robust through mutations

• automatic transcript extraction → much smaller terms, think < m,MAC(h(transcript),k) >

38

