
Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

A Survey of Fully Homomorphic Encryption

Jean-Sébastien Coron

University of Luxembourg

June 1st, 2017



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Homomorphic Encryption

• Homomorphic encryption: perform operations on plaintexts
while manipulating only ciphertexts.

• Normally, this is not possible.

AESK (m1) = 0x3c7317c6bc5634a4ad8479c64714f4f8

AESK (m2) = 0x7619884e1961b051be1aa407da6cac2c

AESK (m1 ⊕m2) = ?

• For some cryptosystems with algebraic structure, this is
possible. For example RSA:

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c1 · c2 = (m1 ·m2)e mod N



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Homomorphic Encryption

• Homomorphic encryption: perform operations on plaintexts
while manipulating only ciphertexts.

• Normally, this is not possible.

AESK (m1) = 0x3c7317c6bc5634a4ad8479c64714f4f8

AESK (m2) = 0x7619884e1961b051be1aa407da6cac2c

AESK (m1 ⊕m2) = ?

• For some cryptosystems with algebraic structure, this is
possible. For example RSA:

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c1 · c2 = (m1 ·m2)e mod N



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Homomorphic Encryption

• Homomorphic encryption: perform operations on plaintexts
while manipulating only ciphertexts.

• Normally, this is not possible.

AESK (m1) = 0x3c7317c6bc5634a4ad8479c64714f4f8

AESK (m2) = 0x7619884e1961b051be1aa407da6cac2c

AESK (m1 ⊕m2) = ?

• For some cryptosystems with algebraic structure, this is
possible. For example RSA:

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c1 · c2 = (m1 ·m2)e mod N



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Homomorphic Encryption with RSA

• Multiplicative property of RSA.

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c = c1 · c2 = (m1 ·m2)e mod N

• Homomorphic encryption: given c1 and c2, we can compute
the ciphertext c for m1 ·m2 mod N

• using only the public-key
• without knowing the plaintexts m1 and m2.



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Homomorphic Encryption with RSA

• Multiplicative property of RSA.

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c = c1 · c2 = (m1 ·m2)e mod N

• Homomorphic encryption: given c1 and c2, we can compute
the ciphertext c for m1 ·m2 mod N

• using only the public-key
• without knowing the plaintexts m1 and m2.



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Paillier Cryptosystem

• Additively homomorphic: Paillier cryptosystem

c1 = gm1 mod N2

c2 = gm2 mod N2
⇒ c1 · c2 = gm1+m2 [N] mod N2

• Application: e-voting.
• Voter i encrypts his vote mi ∈ {0, 1} into:

ci = gmi · zNi mod N2

• Votes can be aggregated using only the public-key:

c =
∏
i

ci = g

∑
i

mi

· z mod N2

• c is enventually decrypted to recover m =
∑

i mi



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Paillier Cryptosystem

• Additively homomorphic: Paillier cryptosystem

c1 = gm1 mod N2

c2 = gm2 mod N2
⇒ c1 · c2 = gm1+m2 [N] mod N2

• Application: e-voting.
• Voter i encrypts his vote mi ∈ {0, 1} into:

ci = gmi · zNi mod N2

• Votes can be aggregated using only the public-key:

c =
∏
i

ci = g

∑
i

mi

· z mod N2

• c is enventually decrypted to recover m =
∑

i mi



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Fully homomorphic encryption

• Multiplicatively homomorphic: RSA.

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c1 · c2 = (m1 ·m2)e mod N

• Additively homomorphic: Paillier

c1 = gm1 mod N2

c2 = gm2 mod N2
⇒ c1 · c2 = gm1+m2 [N] mod N2

• Fully homomorphic: homomorphic for both addition and
multiplication

• Open problem until Gentry’s breakthrough in 2009.



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Fully homomorphic encryption

• Multiplicatively homomorphic: RSA.

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c1 · c2 = (m1 ·m2)e mod N

• Additively homomorphic: Paillier

c1 = gm1 mod N2

c2 = gm2 mod N2
⇒ c1 · c2 = gm1+m2 [N] mod N2

• Fully homomorphic: homomorphic for both addition and
multiplication

• Open problem until Gentry’s breakthrough in 2009.



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Fully homomorphic encryption

• Multiplicatively homomorphic: RSA.

c1 = m e
1 mod N

c2 = m e
2 mod N

⇒ c1 · c2 = (m1 ·m2)e mod N

• Additively homomorphic: Paillier

c1 = gm1 mod N2

c2 = gm2 mod N2
⇒ c1 · c2 = gm1+m2 [N] mod N2

• Fully homomorphic: homomorphic for both addition and
multiplication

• Open problem until Gentry’s breakthrough in 2009.



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Fully homomorphic public-key encryption

• We restrict ourselves to public-key encryption of a single bit:
• 0→ 203ef6124 . . . 23ab8716

• 1→ b327653c1 . . . db326516

• Obviously, encryption must be probabilistic.

• Fully homomorphic property
• Given E (b0) and E (b1), one can compute E (b0 ⊕ b1) and

E (b0 · b1) without knowing the private-key.

• Why is it important ?
• Universality: any Boolean circuit can be written with Xors and

Ands.
• Once you can homomorphically evaluate both a Xor and a

And, you can evaluate any Boolean circuit, any computable
function.



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Fully homomorphic public-key encryption

• We restrict ourselves to public-key encryption of a single bit:
• 0→ 203ef6124 . . . 23ab8716

• 1→ b327653c1 . . . db326516

• Obviously, encryption must be probabilistic.

• Fully homomorphic property
• Given E (b0) and E (b1), one can compute E (b0 ⊕ b1) and

E (b0 · b1) without knowing the private-key.

• Why is it important ?
• Universality: any Boolean circuit can be written with Xors and

Ands.
• Once you can homomorphically evaluate both a Xor and a

And, you can evaluate any Boolean circuit, any computable
function.



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Fully homomorphic public-key encryption

• We restrict ourselves to public-key encryption of a single bit:
• 0→ 203ef6124 . . . 23ab8716

• 1→ b327653c1 . . . db326516

• Obviously, encryption must be probabilistic.

• Fully homomorphic property
• Given E (b0) and E (b1), one can compute E (b0 ⊕ b1) and

E (b0 · b1) without knowing the private-key.

• Why is it important ?
• Universality: any Boolean circuit can be written with Xors and

Ands.
• Once you can homomorphically evaluate both a Xor and a

And, you can evaluate any Boolean circuit, any computable
function.



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Outsourcing Computation

• The cloud receives some data m in encrypted form.
• It receives the ciphertexts ci corresponding to bits mi

• The cloud doesn’t know the mi ’s

• The cloud performs some computation f (m), but without
knowing m

• The computation of f is written as a Boolean circuit with Xors
and Ands

• Every Xor z = x ⊕ y is homomorphically evaluated from the
ciphertexts cx and cy , to get ciphertext cz

• Every And z ′ = x · y is homomorphically evaluated from the
ciphertexts cx and cy , to get ciphertext cz′

• Eventally the cloud obtains a ciphertext c for f (m)
• The user decrypts c to recover f (m)
• The cloud learns nothing about m



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Outsourcing Computation

• The cloud receives some data m in encrypted form.
• It receives the ciphertexts ci corresponding to bits mi

• The cloud doesn’t know the mi ’s

• The cloud performs some computation f (m), but without
knowing m

• The computation of f is written as a Boolean circuit with Xors
and Ands

• Every Xor z = x ⊕ y is homomorphically evaluated from the
ciphertexts cx and cy , to get ciphertext cz

• Every And z ′ = x · y is homomorphically evaluated from the
ciphertexts cx and cy , to get ciphertext cz′

• Eventally the cloud obtains a ciphertext c for f (m)
• The user decrypts c to recover f (m)
• The cloud learns nothing about m



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Outsourcing Computation

• The cloud receives some data m in encrypted form.
• It receives the ciphertexts ci corresponding to bits mi

• The cloud doesn’t know the mi ’s

• The cloud performs some computation f (m), but without
knowing m

• The computation of f is written as a Boolean circuit with Xors
and Ands

• Every Xor z = x ⊕ y is homomorphically evaluated from the
ciphertexts cx and cy , to get ciphertext cz

• Every And z ′ = x · y is homomorphically evaluated from the
ciphertexts cx and cy , to get ciphertext cz′

• Eventally the cloud obtains a ciphertext c for f (m)
• The user decrypts c to recover f (m)
• The cloud learns nothing about m



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

What fully homomorphic encryption brings you

• You have a software that given the revenue, past income,
headcount, etc., of a company can predict its future stock
price.

• I want to know the future stock price of my company, but I
don’t want to disclose confidential information.

• And you don’t want to give me your software containing secret
formulas.

• Using homomorphic encryption:
• I encrypt all the inputs using fully homomorphic encryption

and send them to you in encrypted form.
• You process all my inputs, viewing your software as a circuit.
• You send me the result, still encrypted.
• I decrypt the result and get the predicted stock price.
• You didn’t learn any information about my company.

• More generally:
• Cool buzzwords like secure cloud computing.
• Cool mathematical challenges.



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

What fully homomorphic encryption brings you

• You have a software that given the revenue, past income,
headcount, etc., of a company can predict its future stock
price.

• I want to know the future stock price of my company, but I
don’t want to disclose confidential information.

• And you don’t want to give me your software containing secret
formulas.

• Using homomorphic encryption:
• I encrypt all the inputs using fully homomorphic encryption

and send them to you in encrypted form.
• You process all my inputs, viewing your software as a circuit.
• You send me the result, still encrypted.
• I decrypt the result and get the predicted stock price.
• You didn’t learn any information about my company.

• More generally:
• Cool buzzwords like secure cloud computing.
• Cool mathematical challenges.



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

What fully homomorphic encryption brings you

• You have a software that given the revenue, past income,
headcount, etc., of a company can predict its future stock
price.

• I want to know the future stock price of my company, but I
don’t want to disclose confidential information.

• And you don’t want to give me your software containing secret
formulas.

• Using homomorphic encryption:
• I encrypt all the inputs using fully homomorphic encryption

and send them to you in encrypted form.
• You process all my inputs, viewing your software as a circuit.
• You send me the result, still encrypted.
• I decrypt the result and get the predicted stock price.
• You didn’t learn any information about my company.

• More generally:
• Cool buzzwords like secure cloud computing.
• Cool mathematical challenges.



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Cloud Computing

• Goal: cloud computing
• I encrypt my data before sending it to the cloud
• The cloud can still search, sort and edit my data on my behalf
• Data is kept in encrypted form in the cloud.
• The cloud learns nothing about my data

• The cloud returns encrypted answers
• that only I can decrypt



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Fully Homomorphic Encryption Schemes

• 1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].

• Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

• 2. RLWE schemes [BV11a,BV11b].
• FHE without bootstrapping (modulus switching) [BGV11]
• Batch FHE [GHS12]
• Implementation with homomorphic evaluation of AES [GHS12]
• And many other papers...

• 3. van Dijk, Gentry, Halevi and Vaikuntanathan’s scheme over
the integers [DGHV10].

• Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
• Public-key compression and modulus switching [CNT12]
• Batch and homomorphic evaluation of AES [CCKLLTY13].



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Fully Homomorphic Encryption Schemes

• 1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].

• Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

• 2. RLWE schemes [BV11a,BV11b].
• FHE without bootstrapping (modulus switching) [BGV11]
• Batch FHE [GHS12]
• Implementation with homomorphic evaluation of AES [GHS12]
• And many other papers...

• 3. van Dijk, Gentry, Halevi and Vaikuntanathan’s scheme over
the integers [DGHV10].

• Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
• Public-key compression and modulus switching [CNT12]
• Batch and homomorphic evaluation of AES [CCKLLTY13].



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Fully Homomorphic Encryption Schemes

• 1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].

• Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

• 2. RLWE schemes [BV11a,BV11b].
• FHE without bootstrapping (modulus switching) [BGV11]
• Batch FHE [GHS12]
• Implementation with homomorphic evaluation of AES [GHS12]
• And many other papers...

• 3. van Dijk, Gentry, Halevi and Vaikuntanathan’s scheme over
the integers [DGHV10].

• Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
• Public-key compression and modulus switching [CNT12]
• Batch and homomorphic evaluation of AES [CCKLLTY13].



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

The DGHV Scheme

• Ciphertext for m ∈ {0, 1}:

c = q · p + 2r + m

where p is the secret-key, q and r are randoms.

• Decryption:
(c mod p) mod 2 = m

• Parameters:

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r : ρ ' 71 bits



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

The DGHV Scheme

• Ciphertext for m ∈ {0, 1}:

c = q · p + 2r + m

where p is the secret-key, q and r are randoms.

• Decryption:
(c mod p) mod 2 = m

• Parameters:

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r : ρ ' 71 bits



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

The DGHV Scheme

• Ciphertext for m ∈ {0, 1}:

c = q · p + 2r + m

where p is the secret-key, q and r are randoms.

• Decryption:
(c mod p) mod 2 = m

• Parameters:

c =

γ ' 2 · 107 bits

p : η ' 2700 bits

r : ρ ' 71 bits



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Homomorphic Properties of DGHV

• Addition:

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 + c2 = q′ · p + 2r ′ + m1 + m2

• c1 + c2 is an encryption of m1 + m2 mod 2 = m1 ⊕m2

• Multiplication:

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 · c2 = q′′ · p + 2r ′′ + m1 ·m2

with
r ′′ = 2r1r2 + r1m2 + r2m1

• c1 · c2 is an encryption of m1 ·m2

• Noise becomes twice larger.



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Homomorphic Properties of DGHV

• Addition:

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 + c2 = q′ · p + 2r ′ + m1 + m2

• c1 + c2 is an encryption of m1 + m2 mod 2 = m1 ⊕m2

• Multiplication:

c1 = q1 · p + 2r1 + m1

c2 = q2 · p + 2r2 + m2
⇒ c1 · c2 = q′′ · p + 2r ′′ + m1 ·m2

with
r ′′ = 2r1r2 + r1m2 + r2m1

• c1 · c2 is an encryption of m1 ·m2

• Noise becomes twice larger.



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Somewhat homomorphic scheme

• The number of multiplications is limited.
• Noise grows with the number of multiplications.
• Noise must remain < p for correct decryption.

p

×

ρ

×

p

2ρ

×

p

4ρ



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Gentry’s technique

• To build a FHE scheme, start from the somewhat
homomorphic scheme, that is:

• Only a polynomial of small degree can be homomorphically
applied on ciphertexts.

• Otherwise the noise becomes too large and decryption
becomes incorrect.

• Then, “squash” the decryption procedure:
• express the decryption function as a low degree polynomial in

the bits of the ciphertext c and the secret key sk (equivalently
a boolean circuit of small depth).



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Gentry’s technique

• To build a FHE scheme, start from the somewhat
homomorphic scheme, that is:

• Only a polynomial of small degree can be homomorphically
applied on ciphertexts.

• Otherwise the noise becomes too large and decryption
becomes incorrect.

• Then, “squash” the decryption procedure:
• express the decryption function as a low degree polynomial in

the bits of the ciphertext c and the secret key sk (equivalently
a boolean circuit of small depth).



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Ciphertext refresh: bootstrapping
• Gentry’s breakthrough idea: refresh the ciphertext using the

decryption circuit homomorphically.
• Evaluate the decryption polynomial not on the bits of the

ciphertext c and the secret key sk , but homomorphically on
the encryption of those bits.

• Instead of recovering the bit plaintext m, one gets an
encryption of this bit plaintext, i.e. yet another ciphertext for
the same plaintext.

Decryption
Circuit

× +

+

Ciphertext bits Secret key bits
0 1 11 0 1 01

1
Plaintext

bit

⇒
Decryption

Circuit

× +

+

Ciphertext bits
Encryption of
secret key bits

0 1 11 ? ? ??

?
Encryption of
Plaintext bit

= Refreshed
Ciphertext



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Ciphertext refresh

• Refreshed ciphertext:
• If the degree of the decryption polynomial is small enough, the

resulting noise in this new ciphertext can be smaller than in
the original ciphertext

• Fully homomorphic encryption:
• Given two refreshed ciphertexts one can apply again the

homomorphic operation (either addition or multiplication),
which was not necessarily possible on the original ciphertexts
because of the noise threshold.

• Using this “ciphertext refresh” procedure the number of
homomorphic operations becomes unlimited and we get a fully
homomorphic encryption scheme.



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Ciphertext refresh

• Refreshed ciphertext:
• If the degree of the decryption polynomial is small enough, the

resulting noise in this new ciphertext can be smaller than in
the original ciphertext

• Fully homomorphic encryption:
• Given two refreshed ciphertexts one can apply again the

homomorphic operation (either addition or multiplication),
which was not necessarily possible on the original ciphertexts
because of the noise threshold.

• Using this “ciphertext refresh” procedure the number of
homomorphic operations becomes unlimited and we get a fully
homomorphic encryption scheme.



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Public-key Encryption with DGHV

• Ciphertext
c = q · p + 2r + m

• Public-key: a set of τ encryptions of 0’s.

xi = qi · p + 2ri

• Public-key encryption:

c = m + 2r +
τ∑

i=1

εi · xi

for random εi ∈ {0, 1}.



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Public-key Encryption with DGHV

• Ciphertext
c = q · p + 2r + m

• Public-key: a set of τ encryptions of 0’s.

xi = qi · p + 2ri

• Public-key encryption:

c = m + 2r +
τ∑

i=1

εi · xi

for random εi ∈ {0, 1}.



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Public-key Encryption with DGHV

• Ciphertext
c = q · p + 2r + m

• Public-key: a set of τ encryptions of 0’s.

xi = qi · p + 2ri

• Public-key encryption:

c = m + 2r +
τ∑

i=1

εi · xi

for random εi ∈ {0, 1}.



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

The squashed scheme from DGHV

• The basic decryption m← (c mod p) mod 2 cannot be
directly expressed as a boolean circuit of low depth.

• Alternative decryption formula for c = q · p + 2r + m
• We have q = bc/pe and c = q + m (mod 2)
• Therefore

m← [c]2 ⊕ [bc · (1/p)e]2

• Idea (Gentry, DGHV). Secret-share 1/p as a sparse subset
sum:

1/p =
Θ∑
i=1

si · yi + ε



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

The squashed scheme from DGHV

• The basic decryption m← (c mod p) mod 2 cannot be
directly expressed as a boolean circuit of low depth.

• Alternative decryption formula for c = q · p + 2r + m
• We have q = bc/pe and c = q + m (mod 2)
• Therefore

m← [c]2 ⊕ [bc · (1/p)e]2

• Idea (Gentry, DGHV). Secret-share 1/p as a sparse subset
sum:

1/p =
Θ∑
i=1

si · yi + ε



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

The squashed scheme from DGHV

• The basic decryption m← (c mod p) mod 2 cannot be
directly expressed as a boolean circuit of low depth.

• Alternative decryption formula for c = q · p + 2r + m
• We have q = bc/pe and c = q + m (mod 2)
• Therefore

m← [c]2 ⊕ [bc · (1/p)e]2

• Idea (Gentry, DGHV). Secret-share 1/p as a sparse subset
sum:

1/p =
Θ∑
i=1

si · yi + ε



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Squashed decryption

• Alternative equation

m← [c]2 ⊕ [bc · (1/p)e]2

• Secret-share 1/p as a sparse subset sum:

1/p =
Θ∑
i=1

si · yi + ε

with random public κ-bit numbers yi , and sparse secret
si ∈ {0, 1}.

• Decryption becomes:

m← [c]2 ⊕

[⌊
Θ∑
i=1

si · (yi · c)

⌉]
2



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Squashed decryption

• Alternative equation

m← [c]2 ⊕ [bc · (1/p)e]2

• Secret-share 1/p as a sparse subset sum:

1/p =
Θ∑
i=1

si · yi + ε

with random public κ-bit numbers yi , and sparse secret
si ∈ {0, 1}.

• Decryption becomes:

m← [c]2 ⊕

[⌊
Θ∑
i=1

si · (yi · c)

⌉]
2



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Squashed decryption

• Alternative equation

m← [c]2 ⊕ [bc · (1/p)e]2

• Secret-share 1/p as a sparse subset sum:

1/p =
Θ∑
i=1

si · yi + ε

with random public κ-bit numbers yi , and sparse secret
si ∈ {0, 1}.

• Decryption becomes:

m← [c]2 ⊕

[⌊
Θ∑
i=1

si · (yi · c)

⌉]
2



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Squashed decryption

• Alternative decryption equation:

m← [c]2 ⊕

[⌊
Θ∑
i=1

si · zi

⌉]
2

where zi = yi · c for public yi ’s

• Since si is sparse with H(si ) = θ, only n = dlog2(θ + 1)e bits
of precision for zi = yi · c is required

• With θ = 15, only n = 4 bits of precision for zi = yi · c
• The decryption function can then be expressed as a

polynomial of low degree (30) in the si ’s.



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

The decryption circuit

sb0
1 sb1

1

× =

Sb1

0
1

0

0
0

1

0

0

1

0

× 1 0 0 1 0
z1,1

× 0 0 1 1 0
z1,2

× 1 1 0 1 0

× 0 0 1 1 0
z1,B

= 0 0 0 0 0

= 0 0 0 0 0

= 1 1 0 1 0

= 0 0 0 0 0

⊕
⊕

⊕

⊕

=

011 1 0

sb0√
θ

sb1√
θ

× =

Sbθ

0
1

0

1
0

0

0

0

1

0

× 0 0 1 1 1
zθ,1

× 1 0 0 1 0
zθ,2

× 0 1 0 1 0

× 1 0 1 1 0
zθ,B

= 0 0 0 0 0

= 0 0 0 0 0

= 0 1 0 1 0

= 0 0 0 0 0

⊕
⊕

⊕

⊕

=

010 1 0

sb0
i sb1

j

× =

Sbk=(i−1)
√
θ+j

1
0

0

0
0

1

0

0

1

0

× 1 1 1 1 0
zk,1

× 0 0 0 1 1
zk,2

× 1 0 0 1 0

× 0 0 1 0 0
zk ,B

= 0 0 0 0 0

= 0 0 0 0 0

= 1 0 0 1 0

= 0 0 0 0 0

⊕
⊕

⊕

⊕

=

001 1 0

011 1 0

q1

001 1 0

qk

010 1 0

qθ

+

+

+

+

=

⊕

Plaintext bit



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Grade School addition
• The decryption equation is now:

m← c∗ −

⌊
θ∑

k=1

qk

⌉
mod 2

• where the qk ’s are rational in [0, 2) with n bits of precision
after the binary point.

11111

11111

11111

248

359

79

15

15 815



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Gentry’s Bootstrapping

• The decryption circuit
• Can now be expressed as a polynomial of small degree d in the

secret-key bits si , given the zi = c · yi .

m = Czi (s1, . . . , sΘ)

• To refresh a ciphertext:
• Publish an encryption of the secret-key bits σi = Epk(si )
• Homomorphically evaluate m = Czi (s1, . . . , sΘ), using the

encryptions σi = Epk(si )
• We get Epk(m), that is a new ciphertext but possibly with less

noise (a “recryption”).
• The new noise has size ' d · ρ and is independent of the initial

noise.



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

PK size and timings

Instance λ ρ η γ pk size Recrypt

Toy 42 27 1026 150 ·103 77 KB 0.41 s

Small 52 41 1558 830 ·103 437 KB 4.5 s

Medium 62 56 2128 4.2 ·106 2.2 MB 51 s

Large 72 71 2698 19 ·106 10.3 MB 11 min



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings

Conclusion

• Fully homomorphic encryption is a very active research area.

• Main challenge: make FHE pratical !

• Recent developments
• FHE without bootstrapping (modulus switching) [BGV11]
• Batch FHE [GHS12]
• Implementation with homomorphic evaluation of AES [GHS12]
• FHE based on matrix addition and multiplication [GSW13]
• HElib: FHE library of Halevi and Shoup [HS14]
• Faster Bootstrapping [AP13,AP14,DM15]


	Introduction
	Fully homomorphic encryption

	The DGHV Scheme
	Squashing the decryption
	Parameters and Timings

