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Homomorphic Encryption

e Homomorphic encryption: perform operations on plaintexts
while manipulating only ciphertexts.
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e Homomorphic encryption: perform operations on plaintexts
while manipulating only ciphertexts.

e Normally, this is not possible.

AESK(ml)
AESK(mz)
AESK(ml D m2)

0x3c7317c6bc5634a4ad8479c64714£4£8

0x7619884e1961b051belaad07dabcac2c
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Homomorphic Encryption

e Homomorphic encryption: perform operations on plaintexts
while manipulating only ciphertexts.

e Normally, this is not possible.

AESk(my) = 0x3c7317c6bcb634a4ad8479c64714£4£8
AESk(m2) 0x7619884e1961b051belaad07dabcac2c
AESK(ml (&) m2) ?

e For some cryptosystems with algebraic structure, this is
possible. For example RSA:

cg = m® mod N
= C1-C = (m1 . m2)e mod N
¢ = my® mod N
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Homomorphic Encryption with RSA

e Multiplicative property of RSA.

¢ =m;¢* mod N
=c=c-c=(m-mp)®modN
¢ = my® mod N
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Homomorphic Encryption with RSA

e Multiplicative property of RSA.

cg = m® mod N
=c=c-c=(m-mp)®modN
¢ = m,* mod N

e Homomorphic encryption: given ¢; and ¢, we can compute
the ciphertext ¢ for my - my mod N
e using only the public-key
e without knowing the plaintexts m; and ms.
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Paillier Cryptosystem

e Additively homomorphic: Paillier cryptosystem

— g™ mod N2
1 g mo == gm1+m2 [N] mod N2
= g™ mod N?
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Paillier Cryptosystem

e Additively homomorphic: Paillier cryptosystem

c1 = g™ mod N?
=1 =gmTm N mod N2
= g™ mod N?

e Application: e-voting.
e Voter i encrypts his vote m; € {0,1} into:

¢ =g™ -z mod N?

e Votes can be aggregated using only the public-key:

>om
c:Hc;:gf - z mod N?

e c is enventually decrypted to recover m =), m;
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Fully homomorphic encryption

e Multiplicatively homomorphic: RSA.

cg = m® mod N
= C1-C = (m1 . m2)e mod N
¢ = my®* mod N
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Fully homomorphic encryption

e Multiplicatively homomorphic: RSA.

cg = m® mod N
= C1-C = (m1 . m2)e mod N
¢ = my®* mod N

o Additively homomorphic: Paillier

= g™ mod N?
1 =8 "~ mo S = gm1+m2 (V] mod N2
o = g™ mod N?
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Fully homomorphic encryption

Multiplicatively homomorphic: RSA.

cg = m® mod N
= C1-C = (m1 . m2)e mod N
¢ = my®* mod N

Additively homomorphic: Paillier

= g™ mod N?
¢t =g " mo S = gm1+m2 (M mod N2
o = g™ mod N?

Fully homomorphic: homomorphic for both addition and
multiplication
e Open problem until Gentry's breakthrough in 2009.
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Fully homomorphic public-key encryption

e We restrict ourselves to public-key encryption of a single bit:
e 0 — 203ef6124...23ab8716
e 1 — b327653cl...db326544
e Obviously, encryption must be probabilistic.
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Fully homomorphic public-key encryption

e We restrict ourselves to public-key encryption of a single bit:

e 0 — 203ef6124...23ab8716
e 1 — b327653cl...db326544
e Obviously, encryption must be probabilistic.

e Fully homomorphic property

e Given E(bg) and E(by), one can compute E(by ® by) and
E(bo - by) without knowing the private-key.
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Fully homomorphic public-key encryption

e We restrict ourselves to public-key encryption of a single bit:
e 0 — 203ef6124...23ab8716
e 1 — b327653cl...db326546
e Obviously, encryption must be probabilistic.
e Fully homomorphic property
e Given E(bg) and E(by), one can compute E(by ® by) and
E(bo - by) without knowing the private-key.
e Why is it important ?
e Universality: any Boolean circuit can be written with Xors and
Ands.
e Once you can homomorphically evaluate both a Xor and a
And, you can evaluate any Boolean circuit, any computable
function.
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Outsourcing Computation

e The cloud receives some data m in encrypted form.

o |t receives the ciphertexts ¢; corresponding to bits m;
e The cloud doesn’'t know the m;'s



Introduction
00000e000

Outsourcing Computation

e The cloud receives some data m in encrypted form.

o |t receives the ciphertexts ¢; corresponding to bits m;
e The cloud doesn’'t know the m;'s

e The cloud performs some computation f(m), but without
knowing m
e The computation of f is written as a Boolean circuit with Xors

and Ands
e Every Xor z = x @ y is homomorphically evaluated from the

ciphertexts c, and ¢y, to get ciphertext c,
e Every And z/ = x - y is homomorphically evaluated from the

ciphertexts ¢, and c,, to get ciphertext c,/
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Outsourcing Computation

e The cloud receives some data m in encrypted form.
o |t receives the ciphertexts ¢; corresponding to bits m;
e The cloud doesn’'t know the m;'s
e The cloud performs some computation f(m), but without
knowing m
e The computation of f is written as a Boolean circuit with Xors

and Ands

e Every Xor z = x @ y is homomorphically evaluated from the
ciphertexts c, and ¢y, to get ciphertext c,

e Every And z/ = x - y is homomorphically evaluated from the
ciphertexts ¢, and c,, to get ciphertext c,/

e Eventally the cloud obtains a ciphertext ¢ for f(m)

e The user decrypts c to recover f(m)
e The cloud learns nothing about m
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What fully homomorphic encryption brings you

e You have a software that given the revenue, past income,
headcount, etc., of a company can predict its future stock
price.

e | want to know the future stock price of my company, but |
don't want to disclose confidential information.

e And you don't want to give me your software containing secret
formulas.
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What fully homomorphic encryption brings you

e You have a software that given the revenue, past income,
headcount, etc., of a company can predict its future stock
price.

e | want to know the future stock price of my company, but |
don't want to disclose confidential information.

e And you don't want to give me your software containing secret
formulas.

e Using homomorphic encryption:

e | encrypt all the inputs using fully homomorphic encryption
and send them to you in encrypted form.

e You process all my inputs, viewing your software as a circuit.

e You send me the result, still encrypted.

o | decrypt the result and get the predicted stock price.

e You didn’t learn any information about my company.
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What fully homomorphic encryption brings you

You have a software that given the revenue, past income,
headcount, etc., of a company can predict its future stock
price.
e | want to know the future stock price of my company, but |
don't want to disclose confidential information.
e And you don't want to give me your software containing secret
formulas.

Using homomorphic encryption:
e | encrypt all the inputs using fully homomorphic encryption
and send them to you in encrypted form.
e You process all my inputs, viewing your software as a circuit.
e You send me the result, still encrypted.
o | decrypt the result and get the predicted stock price.
e You didn’t learn any information about my company.

e More generally:

e Cool buzzwords like secure cloud computing.
e Cool mathematical challenges.
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Cloud Computing

e Goal: cloud computing
e | encrypt my data before sending it to the cloud
e The cloud can still search, sort and edit my data on my behalf
e Data is kept in encrypted form in the cloud.
e The cloud learns nothing about my data
e The cloud returns encrypted answers

e that only | can decrypt
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Fully Homomorphic Encryption Schemes

e 1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].

o Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.
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e 1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].

o Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

e 2. RLWE schemes [BV11a,BV11b].

FHE without bootstrapping (modulus switching) [BGV11]
Batch FHE [GHS12]

Implementation with homomorphic evaluation of AES [GHS12]
And many other papers...
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Fully Homomorphic Encryption Schemes

e 1. Breakthrough scheme of Gentry [G09], based on ideal
lattices. Some optimizations by [SV10].
o Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.

e 2. RLWE schemes [BV11a,BV11b].

FHE without bootstrapping (modulus switching) [BGV11]
Batch FHE [GHS12]

Implementation with homomorphic evaluation of AES [GHS12]
And many other papers...

e 3. van Dijk, Gentry, Halevi and Vaikuntanathan's scheme over
the integers [DGHV10].
e Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
e Public-key compression and modulus switching [CNT12]
e Batch and homomorphic evaluation of AES [CCKLLTY13].
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The DGHV Scheme

e Ciphertext for m € {0, 1}:
c=q-p+2r+m

where p is the secret-key, g and r are randoms.
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The DGHV Scheme

e Ciphertext for m € {0, 1}:
c=q-p+2r+m

where p is the secret-key, g and r are randoms.

e Decryption:
(c mod p) mod2=m
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The DGHV Scheme

e Ciphertext for m € {0, 1}:
c=q-p+2r+m

where p is the secret-key, g and r are randoms.
e Decryption:
(c mod p) mod2=m
e Parameters:
7y ~2-107 bits
p: n=~2700 bits

c=[_J ||

r: p=>~T71 bits
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Homomorphic Properties of DGHV
e Addition:

a=q-p+2n+m

=cC o=4q- 2r' + m m
G =qp-p+2m+m 1+ C=q -p+2r +m +m

® 1 + ¢ is an encryption of m; + my mod 2 = m; & my



Introduction The DGHV Scheme Squashing the decryption Parameters and Timings
000000000 0®00000 000000

Homomorphic Properties of DGHV
e Addition:

caa=qi-p+2n+m / /
=>cat+o=q -p+2r+m+m
OQ=q-p+2rn+m ! 2=49°P ! 2
® 1 + ¢ is an encryption of m; + my mod 2 = m; & my

e Multiplication:

a=q-p+2n+m

! !
=C -0 = p+2r +m - m
Q=q -p+2n+m 1'©2=9 P 1o

with
r"=2rr+ rnmy+ rnm

® (1 - ¢ is an encryption of my - mp
o Noise becomes twice larger.
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Somewhat homomorphic scheme

e The number of multiplications is limited.

e Noise grows with the number of multiplications.
e Noise must remain < p for correct decryption.

p
CI T .
T ! P
i —
L/ L] >
]
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the decryption Parameters and Timings

Gentry's technique

e To build a FHE scheme, start from the somewhat
homomorphic scheme, that is:

e Only a polynomial of small degree can be homomorphically
applied on ciphertexts.

e Otherwise the noise becomes too large and decryption
becomes incorrect.
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Gentry's technique

e To build a FHE scheme, start from the somewhat
homomorphic scheme, that is:

e Only a polynomial of small degree can be homomorphically
applied on ciphertexts.

e Otherwise the noise becomes too large and decryption
becomes incorrect.

e Then, “squash” the decryption procedure:

e express the decryption function as a low degree polynomial in
the bits of the ciphertext ¢ and the secret key sk (equivalently
a boolean circuit of small depth).
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Ciphertext refresh: bootstrapping

e Gentry's breakthrough idea: refresh the ciphertext using the
decryption circuit homomorphically.

e Evaluate the decryption polynomial not on the bits of the
ciphertext ¢ and the secret key sk, but homomorphically on
the encryption of those bits.

e Instead of recovering the bit plaintext m, one gets an
encryption of this bit plaintext, i.e. yet another ciphertext for
the same plaintext.

Encryption of

Ciphertext bits Secret key bits Ciphertext bits secret key bits
O 0D BREE - 00 a0
Decryption Decryption
Circuit Circuit

=

Encryption of __ Refreshed

Plaintext =
e Plaintext bit Ciphertext

bit




Introduction The DGHV Scheme Squashing the decryption Parameters and Timings
0000000

Ciphertext refresh

o Refreshed ciphertext:
o |f the degree of the decryption polynomial is small enough, the
resulting noise in this new ciphertext can be smaller than in
the original ciphertext
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Ciphertext refresh

o Refreshed ciphertext:

o |f the degree of the decryption polynomial is small enough, the
resulting noise in this new ciphertext can be smaller than in
the original ciphertext

e Fully homomorphic encryption:

e Given two refreshed ciphertexts one can apply again the
homomorphic operation (either addition or multiplication),
which was not necessarily possible on the original ciphertexts
because of the noise threshold.

o Using this “ciphertext refresh” procedure the number of
homomorphic operations becomes unlimited and we get a fully
homomorphic encryption scheme.
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Public-key Encryption with DGHV

e Ciphertext
c=q-p+2r+m
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Public-key Encryption with DGHV

e Ciphertext
c=q-p+2r+m

e Public-key: a set of 7 encryptions of 0's.

Xi =qi-p+2r
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Public-key Encryption with DGHV

Ciphertext
c=q-p+2r+m

Public-key: a set of 7 encryptions of 0's.

Xj =qj-p+2r

Public-key encryption:

c:m+2r+25,--x,-
i=1

for random ¢; € {0,1}.
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The squashed scheme from DGHV

e The basic decryption m < (¢ mod p) mod 2 cannot be
directly expressed as a boolean circuit of low depth.
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The squashed scheme from DGHV

e The basic decryption m < (¢ mod p) mod 2 cannot be
directly expressed as a boolean circuit of low depth.
e Alternative decryption formula forc=q-p+2r+m

o We have g = [¢/p] and ¢ = g+ m (mod 2)
e Therefore

m [l @ [[c- (1/p)]]2
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The squashed scheme from DGHV

e The basic decryption m < (¢ mod p) mod 2 cannot be
directly expressed as a boolean circuit of low depth.
e Alternative decryption formula forc=q-p+2r+m
o We have g = [¢/p] and ¢ = g+ m (mod 2)
o Therefore
m  [cla & [[c- (1/p)]]2

e Idea (Gentry, DGHV). Secret-share 1/p as a sparse subset
sum:

C]
1/p=> si-yi+te
i=1
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Squashed decryption

e Alternative equation

m « [cr @ [|c- (1/p)]]2
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Squashed decryption

e Alternative equation

m « [cr @ [|c- (1/p)]]2

e Secret-share 1/p as a sparse subset sum:

o
1/p=> si-yi+e
i=1

with random public k-bit numbers y;, and sparse secret
si € {0,1}.
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Squashed decryption

e Alternative equation

m « [cr @ [|c- (1/p)]]2

e Secret-share 1/p as a sparse subset sum:

o
1/p=> si-yi+e
i=1

with random public k-bit numbers y;, and sparse secret

si €4{0,1}.
(C]
{Z si- (yi- C)“
i=1 2

e Decryption becomes:

m [C]z@
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Squashed decryption

e Alternative decryption equation:

©
i=1 2
where z; = y; - ¢ for public y;'s

e Since s; is sparse with H(s;) = 6, only n = [log,(6 + 1)] bits
of precision for z; = y; - ¢ is required

m < [C]Q@

e With 8 = 15, only n = 4 bits of precision for z; = y; - ¢

e The decryption function can then be expressed as a
polynomial of low degree (30) in the s;'s.



Introduction The DGHV Scheme Squashing the decryption Parameters and Timin
( ) 000e00 OC

The decryption circuit

Sby
0| x 10010 = 00000
o]« 00110 = 00000
_|1]x 1re10= 11010
X = 1. .
. ' B
ofx woire -
b7
0] x r1iro -
sb! sbj Zi2
ofx woory -
_|ilx voore =
X = 1. .
: £y
ofx woioo -
. Sby
. 0] 00111 - 00000
bl oshly £
. o|x wooro - woooo
_|1]x ororo = wron0
' %5
o|x wor1o - o000
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Grade School addition

e The decryption equation is now:
0
m+<« c* — Z 9k mod 2
k=1

e where the gx's are rational in [0,2) with n bits of precision
after the binary point.

-
@oD-

(/=)
1 o o
noooo

O0ooo
uju)
154_
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Gentry's Bootstrapping

e The decryption circuit
e Can now be expressed as a polynomial of small degree d in the
secret-key bits s;, given the z; = ¢ - y;.

m= C,(s1,...,%0)
e To refresh a ciphertext:
e Publish an encryption of the secret-key bits o; = Epi(s;i)
e Homomorphically evaluate m = C,,(s1,...,So), using the
encryptions o; = Ep(s;)

o We get E,c(m), that is a new ciphertext but possibly with less
noise (a “recryption”).

e The new noise has size ~ d - p and is independent of the initial
noise.



PK size and timings

Parameters and Timings

[ Je]

] Instance \ A \ p ] n \ o H pk size | Recrypt
Toy 42 [ 27 | 1026 | 150 -10° || 77 KB | 0.41s
Small 52 | 41 | 1558 | 830 -103 || 437 KB | 45+
Medium | 62 | 56 | 2128 | 4.2 -10° || 2.2 MB 51s
Large 72 | 71| 2698 | 19 -10° || 10.3 MB | 11 min
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Conclusion

e Fully homomorphic encryption is a very active research area.

e Main challenge: make FHE pratical !

e Recent developments

FHE without bootstrapping (modulus switching) [BGV11]
Batch FHE [GHS12]

Implementation with homomorphic evaluation of AES [GHS12]
FHE based on matrix addition and multiplication [GSW13]
HElib: FHE library of Halevi and Shoup [HS14]

Faster Bootstrapping [AP13,AP14,DM15]



	Introduction
	Fully homomorphic encryption

	The DGHV Scheme
	Squashing the decryption
	Parameters and Timings

