The DGHV Scheme

Squashing the decryption

Parameters and Timings 00

A Survey of Fully Homomorphic Encryption

Jean-Sébastien Coron

University of Luxembourg

June 1st, 2017

The DGHV Scheme

Squashing the decryption

Parameters and Timings

Homomorphic Encryption

- Homomorphic encryption: perform operations on plaintexts while manipulating only ciphertexts.
 - Normally, this is not possible.

• For some cryptosystems with algebraic structure, this is possible. For example RSA:

$$c_1 = m_1^e \mod N$$

$$c_2 = m_2^e \mod N$$

$$\Rightarrow c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N$$

The DGHV Scheme

Squashing the decryption

Parameters and Timings

Homomorphic Encryption

- Homomorphic encryption: perform operations on plaintexts while manipulating only ciphertexts.
 - Normally, this is not possible.

• For some cryptosystems with algebraic structure, this is possible. For example RSA:

$$c_1 = m_1^e \mod N$$

$$c_2 = m_2^e \mod N$$

$$\Rightarrow c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N$$

The DGHV Scheme

Squashing the decryption

Parameters and Timings

Homomorphic Encryption

- Homomorphic encryption: perform operations on plaintexts while manipulating only ciphertexts.
 - Normally, this is not possible.

 For some cryptosystems with algebraic structure, this is possible. For example RSA:

$$c_1 = m_1^e \mod N$$

$$c_2 = m_2^e \mod N$$

$$\Rightarrow c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N$$

The DGHV Scheme

Squashing the decryption

Parameters and Timings 00

Homomorphic Encryption with RSA

• Multiplicative property of RSA.

 $c_1 = m_1^e \mod N$ $c_2 = m_2^e \mod N$ $\Rightarrow c = c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N$

- Homomorphic encryption: given c_1 and c_2 , we can compute the ciphertext c for $m_1 \cdot m_2 \mod N$
 - using only the public-key
 - without knowing the plaintexts m_1 and m_2 .

The DGHV Scheme

Squashing the decryption

Parameters and Timings

Homomorphic Encryption with RSA

• Multiplicative property of RSA.

$$c_1 = m_1^e \mod N$$

$$c_2 = m_2^e \mod N$$

$$\Rightarrow c = c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N$$

- Homomorphic encryption: given c_1 and c_2 , we can compute the ciphertext c for $m_1 \cdot m_2 \mod N$
 - using only the public-key
 - without knowing the plaintexts m_1 and m_2 .

The DGHV Scheme

Squashing the decryption

Parameters and Timings 00

Paillier Cryptosystem

Additively homomorphic: Paillier cryptosystem

$$c_1 = g^{m_1} \mod N^2 \ c_2 = g^{m_2} \mod N^2 \ \Rightarrow c_1 \cdot c_2 = g^{m_1 + m_2} [N] \mod N^2$$

- Application: e-voting
 - Voter *i* encrypts his vote $m_i \in \{0, 1\}$ into:

$$c_i = g^{m_i} \cdot z_i^N \mod N^2$$

• Votes can be aggregated using only the public-key:

$$c = \prod_i c_i = g^{\sum_i m_i} \cdot z \mod N^2$$

• c is enventually decrypted to recover $m = \sum_i m_i$

The DGHV Scheme

Squashing the decryption

Parameters and Timings 00

Paillier Cryptosystem

• Additively homomorphic: Paillier cryptosystem

$$c_1 = g^{m_1} \mod N^2$$

$$c_2 = g^{m_2} \mod N^2 \implies c_1 \cdot c_2 = g^{m_1 + m_2} [N] \mod N^2$$

- Application: e-voting.
 - Voter *i* encrypts his vote $m_i \in \{0, 1\}$ into:

$$c_i = g^{m_i} \cdot z_i^N \mod N^2$$

• Votes can be aggregated using only the public-key:

$$c = \prod_i c_i = g^{\sum_i m_i} \cdot z \mod N^2$$

• c is enventually decrypted to recover $m = \sum_i m_i$

The DGHV Scheme

Squashing the decryption

Parameters and Timings 00

Fully homomorphic encryption

• Multiplicatively homomorphic: RSA.

$$egin{aligned} &c_1 = {m_1}^e \mod N \ &c_2 = {m_2}^e \mod N \end{aligned} \Rightarrow &c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N \end{aligned}$$

Additively homomorphic: Paillier

$$c_1 = g^{m_1} \mod N^2$$

$$c_2 = g^{m_2} \mod N^2 \implies c_1 \cdot c_2 = g^{m_1 + m_2} [N] \mod N^2$$

- Fully homomorphic: homomorphic for both addition and multiplication
 - Open problem until Gentry's breakthrough in 2009.

The DGHV Scheme

Squashing the decryption

Parameters and Timings 00

Fully homomorphic encryption

• Multiplicatively homomorphic: RSA.

$$egin{aligned} &c_1 = {m_1}^e \mod N \ &c_2 = {m_2}^e \mod N \end{aligned} \Rightarrow &c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N \end{aligned}$$

• Additively homomorphic: Paillier

$$c_1 = g^{m_1} \mod N^2$$

$$c_2 = g^{m_2} \mod N^2 \implies c_1 \cdot c_2 = g^{m_1 + m_2} [N] \mod N^2$$

- Fully homomorphic: homomorphic for both addition and multiplication
 - Open problem until Gentry's breakthrough in 2009.

The DGHV Scheme

Squashing the decryption

Parameters and Timings 00

Fully homomorphic encryption

• Multiplicatively homomorphic: RSA.

$$c_1 = m_1^e \mod N$$

$$c_2 = m_2^e \mod N \implies c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N$$

• Additively homomorphic: Paillier

$$c_1 = g^{m_1} \mod N^2$$

$$c_2 = g^{m_2} \mod N^2 \implies c_1 \cdot c_2 = g^{m_1 + m_2} [N] \mod N^2$$

- Fully homomorphic: homomorphic for both addition and multiplication
 - Open problem until Gentry's breakthrough in 2009.

Squashing the decryption

Parameters and Timings 00

Fully homomorphic public-key encryption

- We restrict ourselves to public-key encryption of a single bit:
 - $0 \rightarrow 203ef6124 \dots 23ab87_{16}$
 - $1 \rightarrow b327653c1 \dots db3265_{16}$
 - Obviously, encryption must be probabilistic.
- Fully homomorphic property
 - Given $E(b_0)$ and $E(b_1)$, one can compute $E(b_0 \oplus b_1)$ and $E(b_0 \cdot b_1)$ without knowing the private-key.
- Why is it important ?
 - Universality: any Boolean circuit can be written with Xors and Ands.
 - Once you can homomorphically evaluate both a Xor and a And, you can evaluate any Boolean circuit, any computable function.

Squashing the decryption 000000

Parameters and Timings 00

Fully homomorphic public-key encryption

- We restrict ourselves to public-key encryption of a single bit:
 - $0 \rightarrow 203ef6124 \dots 23ab87_{16}$
 - $1 \rightarrow b327653c1 \dots db3265_{16}$
 - Obviously, encryption must be probabilistic.
- Fully homomorphic property
 - Given $E(b_0)$ and $E(b_1)$, one can compute $E(b_0 \oplus b_1)$ and $E(b_0 \cdot b_1)$ without knowing the private-key.
- Why is it important ?
 - Universality: any Boolean circuit can be written with Xors and Ands.
 - Once you can homomorphically evaluate both a Xor and a And, you can evaluate any Boolean circuit, any computable function.

Squashing the decryption

Parameters and Timings 00

Fully homomorphic public-key encryption

- We restrict ourselves to public-key encryption of a single bit:
 - $0 \rightarrow 203ef6124 \dots 23ab87_{16}$
 - $1 \rightarrow b327653c1 \dots db3265_{16}$
 - Obviously, encryption must be probabilistic.
- Fully homomorphic property
 - Given $E(b_0)$ and $E(b_1)$, one can compute $E(b_0 \oplus b_1)$ and $E(b_0 \cdot b_1)$ without knowing the private-key.
- Why is it important ?
 - Universality: any Boolean circuit can be written with Xors and Ands.
 - Once you can homomorphically evaluate both a Xor and a And, you can evaluate any Boolean circuit, any computable function.

The DGHV Scheme

Squashing the decryption

Parameters and Timings 00

Outsourcing Computation

- The cloud receives some data *m* in encrypted form.
 - It receives the ciphertexts c_i corresponding to bits m_i
 - The cloud doesn't know the *m_i*'s
- The cloud performs some computation f(m), but without knowing m
 - The computation of *f* is written as a Boolean circuit with Xors and Ands
 - Every Xor z = x ⊕ y is homomorphically evaluated from the ciphertexts c_x and c_y, to get ciphertext c_z
 - Every And $z' = x \cdot y$ is homomorphically evaluated from the ciphertexts c_x and c_y , to get ciphertext $c_{z'}$
- Eventally the cloud obtains a ciphertext c for f(m)
 - The user decrypts c to recover f(m)
 - The cloud learns nothing about m

The DGHV Scheme

Squashing the decryption

Parameters and Timings 00

Outsourcing Computation

- The cloud receives some data *m* in encrypted form.
 - It receives the ciphertexts c_i corresponding to bits m_i
 - The cloud doesn't know the *m_i*'s
- The cloud performs some computation f(m), but without knowing m
 - The computation of *f* is written as a Boolean circuit with Xors and Ands
 - Every Xor z = x ⊕ y is homomorphically evaluated from the ciphertexts c_x and c_y, to get ciphertext c_z
 - Every And z' = x · y is homomorphically evaluated from the ciphertexts c_x and c_y, to get ciphertext c_{z'}
- Eventally the cloud obtains a ciphertext c for f(m)
 - The user decrypts c to recover f(m)
 - The cloud learns nothing about m

The DGHV Scheme

Squashing the decryption

Parameters and Timings 00

Outsourcing Computation

- The cloud receives some data *m* in encrypted form.
 - It receives the ciphertexts c_i corresponding to bits m_i
 - The cloud doesn't know the *m_i*'s
- The cloud performs some computation f(m), but without knowing m
 - The computation of *f* is written as a Boolean circuit with Xors and Ands
 - Every Xor z = x ⊕ y is homomorphically evaluated from the ciphertexts c_x and c_y, to get ciphertext c_z
 - Every And z' = x · y is homomorphically evaluated from the ciphertexts c_x and c_y, to get ciphertext c_{z'}
- Eventally the cloud obtains a ciphertext c for f(m)
 - The user decrypts c to recover f(m)
 - The cloud learns nothing about m

Parameters and Timings

What fully homomorphic encryption brings you

- You have a software that given the revenue, past income, headcount, etc., of a company can predict its future stock price.
 - I want to know the future stock price of my company, but I don't want to disclose confidential information.
 - And you don't want to give me your software containing secret formulas.
- Using homomorphic encryption:
 - I encrypt all the inputs using fully homomorphic encryption and send them to you in encrypted form.
 - You process all my inputs, viewing your software as a circuit.
 - You send me the result, still encrypted.
 - I decrypt the result and get the predicted stock price.
 - You didn't learn any information about my company.
- More generally:
 - Cool buzzwords like secure cloud computing.
 - Cool mathematical challenges.

Parameters and Timings

What fully homomorphic encryption brings you

- You have a software that given the revenue, past income, headcount, etc., of a company can predict its future stock price.
 - I want to know the future stock price of my company, but I don't want to disclose confidential information.
 - And you don't want to give me your software containing secret formulas.
- Using homomorphic encryption:
 - I encrypt all the inputs using fully homomorphic encryption and send them to you in encrypted form.
 - You process all my inputs, viewing your software as a circuit.
 - You send me the result, still encrypted.
 - I decrypt the result and get the predicted stock price.
 - You didn't learn any information about my company.
- More generally:
 - Cool buzzwords like secure cloud computing.
 - Cool mathematical challenges.

Parameters and Timings

What fully homomorphic encryption brings you

- You have a software that given the revenue, past income, headcount, etc., of a company can predict its future stock price.
 - I want to know the future stock price of my company, but I don't want to disclose confidential information.
 - And you don't want to give me your software containing secret formulas.
- Using homomorphic encryption:
 - I encrypt all the inputs using fully homomorphic encryption and send them to you in encrypted form.
 - You process all my inputs, viewing your software as a circuit.
 - You send me the result, still encrypted.
 - I decrypt the result and get the predicted stock price.
 - You didn't learn any information about my company.
- More generally:
 - Cool buzzwords like secure cloud computing.
 - Cool mathematical challenges.

The DGHV Scheme

Squashing the decryption

Parameters and Timings

Cloud Computing

- Goal: cloud computing
 - I encrypt my data before sending it to the cloud
 - The cloud can still search, sort and edit my data on my behalf
 - Data is kept in encrypted form in the cloud.
 - The cloud learns nothing about my data
- The cloud returns encrypted answers
 - that only I can decrypt

The DGHV Scheme

Squashing the decryption

Parameters and Timings

Fully Homomorphic Encryption Schemes

- 1. Breakthrough scheme of Gentry [G09], based on ideal lattices. Some optimizations by [SV10].
 - Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.
- 2. RLWE schemes [BV11a,BV11b].
 - FHE without bootstrapping (modulus switching) [BGV11]
 - Batch FHE [GHS12]
 - Implementation with homomorphic evaluation of AES [GHS12]
 - And many other papers...
- 3. van Dijk, Gentry, Halevi and Vaikuntanathan's scheme over the integers [DGHV10].
 - Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
 - Public-key compression and modulus switching [CNT12]
 - Batch and homomorphic evaluation of AES [CCKLLTY13].

The DGHV Scheme

Squashing the decryption

Parameters and Timings

Fully Homomorphic Encryption Schemes

- 1. Breakthrough scheme of Gentry [G09], based on ideal lattices. Some optimizations by [SV10].
 - Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.
- 2. RLWE schemes [BV11a,BV11b].
 - FHE without bootstrapping (modulus switching) [BGV11]
 - Batch FHE [GHS12]
 - Implementation with homomorphic evaluation of AES [GHS12]
 - And many other papers...
- 3. van Dijk, Gentry, Halevi and Vaikuntanathan's scheme over the integers [DGHV10].
 - Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
 - Public-key compression and modulus switching [CNT12]
 - Batch and homomorphic evaluation of AES [CCKLLTY13].

Squashing the decryption

Parameters and Timings

Fully Homomorphic Encryption Schemes

- 1. Breakthrough scheme of Gentry [G09], based on ideal lattices. Some optimizations by [SV10].
 - Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.
- 2. RLWE schemes [BV11a,BV11b].
 - FHE without bootstrapping (modulus switching) [BGV11]
 - Batch FHE [GHS12]
 - Implementation with homomorphic evaluation of AES [GHS12]
 - And many other papers...
- 3. van Dijk, Gentry, Halevi and Vaikuntanathan's scheme over the integers [DGHV10].
 - Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
 - Public-key compression and modulus switching [CNT12]
 - Batch and homomorphic evaluation of AES [CCKLLTY13].

The DGHV Scheme

Squashing the decryption

Parameters and Timings 00

The DGHV Scheme

• Ciphertext for $m \in \{0,1\}$:

$$c = q \cdot p + 2r + m$$

where p is the secret-key, q and r are randoms.

• Decryption:

 $(c \mod p) \mod 2 = m$

• Parameters:

The DGHV Scheme

Squashing the decryption

Parameters and Timings

The DGHV Scheme

• Ciphertext for $m \in \{0,1\}$:

$$c = q \cdot p + 2r + m$$

where p is the secret-key, q and r are randoms.

• Decryption:

 $(c \mod p) \mod 2 = m$

• Parameters:

The DGHV Scheme

Squashing the decryption

Parameters and Timings 00

The DGHV Scheme

• Ciphertext for $m \in \{0,1\}$:

$$c = q \cdot p + 2r + m$$

where p is the secret-key, q and r are randoms.

• Decryption:

 $(c \mod p) \mod 2 = m$

Parameters:

$$c = \boxed{ \left\| \right\|_{r \in \rho^{\infty} \ge 71}}$$

The DGHV Scheme

Squashing the decryption

Parameters and Timings

Homomorphic Properties of DGHV

• Addition:

$$c_1 = q_1 \cdot p + 2r_1 + m_1 \ c_2 = q_2 \cdot p + 2r_2 + m_2 \Rightarrow c_1 + c_2 = q' \cdot p + 2r' + m_1 + m_2$$

• $c_1 + c_2$ is an encryption of $m_1 + m_2 \mod 2 = m_1 \oplus m_2$ Multiplication:

 $c_1 = q_1 \cdot p + 2r_1 + m_1 \\ c_2 = q_2 \cdot p + 2r_2 + m_2 \Rightarrow c_1 \cdot c_2 = q'' \cdot p + 2r'' + m_1 \cdot m_2$

with

$$r'' = 2r_1r_2 + r_1m_2 + r_2m_1$$

- $c_1 \cdot c_2$ is an encryption of $m_1 \cdot m_2$
- Noise becomes twice larger.

The DGHV Scheme

Squashing the decryption 000000

Parameters and Timings

Homomorphic Properties of DGHV

• Addition:

$$c_1 = q_1 \cdot p + 2r_1 + m_1$$

 $c_2 = q_2 \cdot p + 2r_2 + m_2$ $\Rightarrow c_1 + c_2 = q' \cdot p + 2r' + m_1 + m_2$

• $c_1 + c_2$ is an encryption of $m_1 + m_2 \mod 2 = m_1 \oplus m_2$

• Multiplication:

$$c_1 = q_1 \cdot p + 2r_1 + m_1 \\ c_2 = q_2 \cdot p + 2r_2 + m_2 \Rightarrow c_1 \cdot c_2 = q'' \cdot p + 2r'' + m_1 \cdot m_2$$

with

$$r'' = 2r_1r_2 + r_1m_2 + r_2m_1$$

- $c_1 \cdot c_2$ is an encryption of $m_1 \cdot m_2$
- Noise becomes twice larger.

The DGHV Scheme

Squashing the decryption

Parameters and Timings 00

Somewhat homomorphic scheme

- The number of multiplications is limited.
 - Noise grows with the number of multiplications.
 - Noise must remain < p for correct decryption.

The DGHV Scheme

Squashing the decryption

Parameters and Timings

Gentry's technique

- To build a FHE scheme, start from the somewhat homomorphic scheme, that is:
 - Only a polynomial of small degree can be homomorphically applied on ciphertexts.
 - Otherwise the noise becomes too large and decryption becomes incorrect.
- Then, "squash" the decryption procedure:
 - express the decryption function as a low degree polynomial in the bits of the ciphertext *c* and the secret key *sk* (equivalently a boolean circuit of small depth).

The DGHV Scheme

Squashing the decryption

Parameters and Timings 00

Gentry's technique

- To build a FHE scheme, start from the somewhat homomorphic scheme, that is:
 - Only a polynomial of small degree can be homomorphically applied on ciphertexts.
 - Otherwise the noise becomes too large and decryption becomes incorrect.
- Then, "squash" the decryption procedure:
 - express the decryption function as a low degree polynomial in the bits of the ciphertext *c* and the secret key *sk* (equivalently a boolean circuit of small depth).

The DGHV Scheme

Squashing the decryption

Parameters and Timings

Ciphertext refresh: bootstrapping

- Gentry's breakthrough idea: refresh the ciphertext using the decryption circuit homomorphically.
 - Evaluate the decryption polynomial not on the bits of the ciphertext *c* and the secret key *sk*, but homomorphically on the encryption of those bits.
 - Instead of recovering the bit plaintext *m*, one gets an encryption of this bit plaintext, *i.e.* yet another ciphertext for the same plaintext.

The DGHV Scheme

Squashing the decryption

Parameters and Timings 00

Ciphertext refresh

- Refreshed ciphertext:
 - If the degree of the decryption polynomial is small enough, the resulting noise in this new ciphertext can be smaller than in the original ciphertext
- Fully homomorphic encryption:
 - Given two refreshed ciphertexts one can apply again the homomorphic operation (either addition or multiplication), which was not necessarily possible on the original ciphertexts because of the noise threshold.
 - Using this "ciphertext refresh" procedure the number of homomorphic operations becomes unlimited and we get a fully homomorphic encryption scheme.

The DGHV Scheme

Squashing the decryption

Parameters and Timings 00

Ciphertext refresh

- Refreshed ciphertext:
 - If the degree of the decryption polynomial is small enough, the resulting noise in this new ciphertext can be smaller than in the original ciphertext
- Fully homomorphic encryption:
 - Given two refreshed ciphertexts one can apply again the homomorphic operation (either addition or multiplication), which was not necessarily possible on the original ciphertexts because of the noise threshold.
 - Using this "ciphertext refresh" procedure the number of homomorphic operations becomes unlimited and we get a fully homomorphic encryption scheme.

The DGHV Scheme

Squashing the decryption

Parameters and Timings

Public-key Encryption with DGHV

• Ciphertext

 $c = q \cdot p + 2r + m$

• Public-key: a set of τ encryptions of 0's.

$$x_i = q_i \cdot p + 2r_i$$

• Public-key encryption:

$$c = m + 2r + \sum_{i=1}^{\tau} \varepsilon_i \cdot x_i$$

for random $\varepsilon_i \in \{0, 1\}$.

The DGHV Scheme

Squashing the decryption

Parameters and Timings

Public-key Encryption with DGHV

• Ciphertext

$$c = q \cdot p + 2r + m$$

• Public-key: a set of τ encryptions of 0's.

$$x_i = q_i \cdot p + 2r_i$$

Public-key encryption:

$$c = m + 2r + \sum_{i=1}^{\tau} \varepsilon_i \cdot x_i$$

for random $\varepsilon_i \in \{0, 1\}$.

The DGHV Scheme

Squashing the decryption

Parameters and Timings 00

Public-key Encryption with DGHV

• Ciphertext

$$c=q\cdot p+2r+m$$

• Public-key: a set of τ encryptions of 0's.

$$x_i = q_i \cdot p + 2r_i$$

• Public-key encryption:

$$c = m + 2r + \sum_{i=1}^{\tau} \varepsilon_i \cdot x_i$$

for random $\varepsilon_i \in \{0, 1\}$.

The DGHV Scheme

Squashing the decryption • 00000 Parameters and Timings

The squashed scheme from DGHV

- The basic decryption m ← (c mod p) mod 2 cannot be directly expressed as a boolean circuit of low depth.
- Alternative decryption formula for $c = q \cdot p + 2r + m$
 - We have $q = \lfloor c/p \rfloor$ and $c = q + m \pmod{2}$
 - Therefore

 $m \leftarrow [c]_2 \oplus [[c \cdot (1/p)]]_2$

• Idea (Gentry, DGHV). Secret-share 1/p as a sparse subset sum:

$$1/p = \sum_{i=1}^{\Theta} s_i \cdot y_i + \varepsilon$$

The DGHV Scheme

Squashing the decryption • 00000 Parameters and Timings

The squashed scheme from DGHV

- The basic decryption m ← (c mod p) mod 2 cannot be directly expressed as a boolean circuit of low depth.
- Alternative decryption formula for $c = q \cdot p + 2r + m$
 - We have $q = \lfloor c/p \rceil$ and $c = q + m \pmod{2}$
 - Therefore

 $m \leftarrow [c]_2 \oplus [\lfloor c \cdot (1/p) \rceil]_2$

• Idea (Gentry, DGHV). Secret-share 1/p as a sparse subset sum:

$$1/p = \sum_{i=1}^{\Theta} s_i \cdot y_i + \varepsilon$$

The DGHV Scheme

Squashing the decryption • 00000 Parameters and Timings

The squashed scheme from DGHV

- The basic decryption m ← (c mod p) mod 2 cannot be directly expressed as a boolean circuit of low depth.
- Alternative decryption formula for $c = q \cdot p + 2r + m$
 - We have $q = \lfloor c/p \rceil$ and $c = q + m \pmod{2}$
 - Therefore

$$m \leftarrow [c]_2 \oplus [\lfloor c \cdot (1/p) \rceil]_2$$

 Idea (Gentry, DGHV). Secret-share 1/p as a sparse subset sum:

$$1/p = \sum_{i=1}^{\Theta} s_i \cdot y_i + \varepsilon$$

The DGHV Scheme

Squashing the decryption

Parameters and Timings 00

Squashed decryption

Alternative equation

 $m \leftarrow [c]_2 \oplus [\lfloor c \cdot (1/p) \rceil]_2$

• Secret-share 1/p as a sparse subset sum:

$$1/p = \sum_{i=1}^{\Theta} s_i \cdot y_i + \varepsilon$$

with random public κ -bit numbers y_i , and sparse secret $s_i \in \{0, 1\}$.

• Decryption becomes:

$$m \leftarrow [c]_2 \oplus \left[\left[\sum_{i=1}^{\Theta} s_i \cdot (y_i \cdot c) \right] \right]_2$$

The DGHV Scheme

Squashing the decryption

Parameters and Timings

Squashed decryption

Alternative equation

$$m \leftarrow [c]_2 \oplus [\lfloor c \cdot (1/p) \rceil]_2$$

• Secret-share 1/p as a sparse subset sum:

$$1/p = \sum_{i=1}^{\Theta} s_i \cdot y_i + \varepsilon$$

with random public κ -bit numbers y_i , and sparse secret $s_i \in \{0, 1\}$.

Decryption becomes:

$$m \leftarrow [c]_2 \oplus \left[\left[\sum_{i=1}^{\Theta} s_i \cdot (y_i \cdot c) \right] \right]_2$$

The DGHV Scheme

Squashing the decryption

Parameters and Timings

Squashed decryption

Alternative equation

$$m \leftarrow [c]_2 \oplus [\lfloor c \cdot (1/p) \rceil]_2$$

• Secret-share 1/p as a sparse subset sum:

$$1/p = \sum_{i=1}^{\Theta} s_i \cdot y_i + \varepsilon$$

with random public κ -bit numbers y_i , and sparse secret $s_i \in \{0, 1\}$.

Decryption becomes:

$$m \leftarrow [c]_2 \oplus \left[\left\lfloor \sum_{i=1}^{\Theta} s_i \cdot (y_i \cdot c) \right\rfloor \right]_2$$

The DGHV Scheme

Squashing the decryption

Parameters and Timings

Squashed decryption

• Alternative decryption equation:

$$m \leftarrow [c]_2 \oplus \left[\left\lfloor \sum_{i=1}^{\Theta} s_i \cdot z_i \right\rfloor \right]_2$$

where $z_i = y_i \cdot c$ for public y_i 's

Since s_i is sparse with H(s_i) = θ, only n = ⌈log₂(θ + 1)⌉ bits of precision for z_i = y_i · c is required

• With $\theta = 15$, only n = 4 bits of precision for $z_i = y_i \cdot c$

• The decryption function can then be expressed as a polynomial of low degree (30) in the *s_i*'s.

The DGHV Scheme 0000000 Squashing the decryption

Parameters and Timings

The decryption circuit

The DGHV Scheme

Squashing the decryption

Parameters and Timings 00

Grade School addition

• The decryption equation is now:

$$m \leftarrow c^* - \left\lfloor \sum_{k=1}^{ heta} q_k
ight
ceil \mod 2$$

• where the q_k 's are rational in [0, 2) with *n* bits of precision after the binary point.

The DGHV Scheme

Squashing the decryption

Parameters and Timings 00

Gentry's Bootstrapping

- The decryption circuit
 - Can now be expressed as a polynomial of small degree d in the secret-key bits s_i, given the z_i = c · y_i.

$$m = C_{z_i}(s_1,\ldots,s_{\Theta})$$

- To refresh a ciphertext:
 - Publish an encryption of the secret-key bits $\sigma_i = E_{pk}(s_i)$
 - Homomorphically evaluate m = C_{zi}(s₁,..., s_Θ), using the encryptions σ_i = E_{pk}(s_i)
 - We get E_{pk}(m), that is a new ciphertext but possibly with less noise (a "recryption").
 - The new noise has size $\simeq d \cdot \rho$ and is independent of the initial noise.

The DGHV Scheme

Squashing the decryption 000000

Parameters and Timings

PK size and timings

Instance	λ	ρ	η	γ	pk size	Recrypt
Тоу	42	27	1026	$150 \cdot 10^{3}$	77 KB	0.41 s
Small	52	41	1558	$830 \cdot 10^{3}$	437 KB	4.5 s
Medium	62	56	2128	4.2 ·10 ⁶	2.2 MB	51 s
Large	72	71	2698	$19 \cdot 10^{6}$	10.3 MB	11 min

The DGHV Scheme

Squashing the decryption

Parameters and Timings $\circ \bullet$

Conclusion

- Fully homomorphic encryption is a very active research area.
- Main challenge: make FHE pratical !
- Recent developments
 - FHE without bootstrapping (modulus switching) [BGV11]
 - Batch FHE [GHS12]
 - Implementation with homomorphic evaluation of AES [GHS12]
 - FHE based on matrix addition and multiplication [GSW13]
 - HElib: FHE library of Halevi and Shoup [HS14]
 - Faster Bootstrapping [AP13,AP14,DM15]