A Survey of Fully Homomorphic Encryption

Jean-Sébastien Coron
University of Luxembourg

June 1st, 2017

Homomorphic Encryption

- Homomorphic encryption: perform operations on plaintexts while manipulating only ciphertexts.

Homomorphic Encryption

- Homomorphic encryption: perform operations on plaintexts while manipulating only ciphertexts.
- Normally, this is not possible.

$$
\begin{array}{ll}
\mathrm{AES}_{K}\left(m_{1}\right) & =0 \times 3 c 7317 \mathrm{c} 6 \mathrm{bc} 5634 \mathrm{a} 4 \mathrm{ad} 8479 \mathrm{c} 64714 \mathrm{f} 4 \mathrm{f} 8 \\
\mathrm{AES}_{K}\left(m_{2}\right) & =0 \times 7619884 \mathrm{e} 1961 \mathrm{~b} 051 \mathrm{be} 1 \mathrm{aa} 407 \mathrm{da} 6 \mathrm{cac} 2 \mathrm{c} \\
\mathrm{AES}_{K}\left(m_{1} \oplus m_{2}\right) & =?
\end{array}
$$

Homomorphic Encryption

- Homomorphic encryption: perform operations on plaintexts while manipulating only ciphertexts.
- Normally, this is not possible.

$$
\begin{array}{ll}
\mathrm{AES}_{K}\left(m_{1}\right) & =0 \mathrm{x} 3 \mathrm{c} 7317 \mathrm{c} 6 \mathrm{bc} 5634 \mathrm{a} 4 \mathrm{ad} 8479 \mathrm{c} 64714 \mathrm{f} 4 \mathrm{f} 8 \\
\mathrm{AES}_{K}\left(m_{2}\right) & =0 \mathrm{x} 7619884 \mathrm{e} 1961 \mathrm{~b} 051 \mathrm{be} 1 \mathrm{aa} 407 \mathrm{da} 6 \mathrm{cac} 2 \mathrm{c} \\
\mathrm{AES}_{K}\left(m_{1} \oplus m_{2}\right) & =?
\end{array}
$$

- For some cryptosystems with algebraic structure, this is possible. For example RSA:

$$
\begin{aligned}
& c_{1}=m_{1}^{e} \bmod N \\
& c_{2}=m_{2}^{e} \bmod N
\end{aligned} \Rightarrow c_{1} \cdot c_{2}=\left(m_{1} \cdot m_{2}\right)^{e} \bmod N
$$

Homomorphic Encryption with RSA

- Multiplicative property of RSA.

$$
\begin{aligned}
& c_{1}=m_{1}^{e} \bmod N \\
& c_{2}=m_{2}^{e} \bmod N
\end{aligned} \Rightarrow c=c_{1} \cdot c_{2}=\left(m_{1} \cdot m_{2}\right)^{e} \bmod N
$$

Homomorphic Encryption with RSA

- Multiplicative property of RSA.

$$
\begin{aligned}
& c_{1}=m_{1}^{e} \bmod N \\
& c_{2}=m_{2}^{e} \bmod N
\end{aligned} \Rightarrow c=c_{1} \cdot c_{2}=\left(m_{1} \cdot m_{2}\right)^{e} \bmod N
$$

- Homomorphic encryption: given c_{1} and c_{2}, we can compute the ciphertext c for $m_{1} \cdot m_{2} \bmod N$
- using only the public-key
- without knowing the plaintexts m_{1} and m_{2}.

Paillier Cryptosystem

- Additively homomorphic: Paillier cryptosystem

$$
\begin{aligned}
& c_{1}=g^{m_{1}} \bmod N^{2} \\
& c_{2}=g^{m_{2}} \bmod N^{2}
\end{aligned} \Rightarrow c_{1} \cdot c_{2}=g^{m_{1}+m_{2}[N]} \bmod N^{2}
$$

- Application: e-voting.

Votes can be aggregated using only the public-key:

Paillier Cryptosystem

- Additively homomorphic: Paillier cryptosystem

$$
\begin{aligned}
& c_{1}=g^{m_{1}} \bmod N^{2} \\
& c_{2}=g^{m_{2}} \bmod N^{2}
\end{aligned} \Rightarrow c_{1} \cdot c_{2}=g^{m_{1}+m_{2}[N]} \bmod N^{2}
$$

- Application: e-voting.
- Voter i encrypts his vote $m_{i} \in\{0,1\}$ into:

$$
c_{i}=g^{m_{i}} \cdot z_{i}^{N} \bmod N^{2}
$$

- Votes can be aggregated using only the public-key:

$$
c=\prod_{i} c_{i}=g^{\sum_{i} m_{i}} \cdot z \bmod N^{2}
$$

- c is enventually decrypted to recover $m=\sum_{i} m_{i}$

Fully homomorphic encryption

- Multiplicatively homomorphic: RSA.

$$
\begin{aligned}
& c_{1}=m_{1}^{e} \bmod N \\
& c_{2}=m_{2}^{e} \bmod N
\end{aligned} \Rightarrow c_{1} \cdot c_{2}=\left(m_{1} \cdot m_{2}\right)^{e} \bmod N
$$

- Additively homomorphic: Paillier

Fully homomorphic encryption

- Multiplicatively homomorphic: RSA.

$$
\begin{aligned}
& c_{1}=m_{1}^{e} \bmod N \\
& c_{2}=m_{2}^{e} \bmod N
\end{aligned} \Rightarrow c_{1} \cdot c_{2}=\left(m_{1} \cdot m_{2}\right)^{e} \bmod N
$$

- Additively homomorphic: Paillier

$$
\begin{aligned}
& c_{1}=g^{m_{1}} \bmod N^{2} \\
& c_{2}=g^{m_{2}} \bmod N^{2}
\end{aligned} \Rightarrow c_{1} \cdot c_{2}=g^{m_{1}+m_{2}[N]} \bmod N^{2}
$$

multiplication

Fully homomorphic encryption

- Multiplicatively homomorphic: RSA.

$$
\begin{aligned}
& c_{1}=m_{1}^{e} \bmod N \\
& c_{2}=m_{2}^{e} \bmod N
\end{aligned} \Rightarrow c_{1} \cdot c_{2}=\left(m_{1} \cdot m_{2}\right)^{e} \bmod N
$$

- Additively homomorphic: Paillier

$$
\begin{aligned}
& c_{1}=g^{m_{1}} \bmod N^{2} \\
& c_{2}=g^{m_{2}} \bmod N^{2}
\end{aligned} \Rightarrow c_{1} \cdot c_{2}=g^{m_{1}+m_{2}[N]} \bmod N^{2}
$$

- Fully homomorphic: homomorphic for both addition and multiplication
- Open problem until Gentry's breakthrough in 2009.

Fully homomorphic public-key encryption

- We restrict ourselves to public-key encryption of a single bit:
- $0 \rightarrow 203 e f 6124$...23ab87 ${ }_{16}$
- $1 \rightarrow$ b327653c1...db3265 ${ }_{16}$
- Obviously, encryption must be probabilistic.
- Fully homomorphic property

Fully homomorphic public-key encryption

- We restrict ourselves to public-key encryption of a single bit:
- $0 \rightarrow 203 e f 6124$...23ab87 ${ }_{16}$
- $1 \rightarrow$ b327653c1...db3265 ${ }_{16}$
- Obviously, encryption must be probabilistic.
- Fully homomorphic property
- Given $E\left(b_{0}\right)$ and $E\left(b_{1}\right)$, one can compute $E\left(b_{0} \oplus b_{1}\right)$ and $E\left(b_{0} \cdot b_{1}\right)$ without knowing the private-key.

Fully homomorphic public-key encryption

- We restrict ourselves to public-key encryption of a single bit:
- $0 \rightarrow 203 e f 6124$...23ab87 ${ }_{16}$
- $1 \rightarrow$ b327653c1 ...db3265 ${ }_{16}$
- Obviously, encryption must be probabilistic.
- Fully homomorphic property
- Given $E\left(b_{0}\right)$ and $E\left(b_{1}\right)$, one can compute $E\left(b_{0} \oplus b_{1}\right)$ and $E\left(b_{0} \cdot b_{1}\right)$ without knowing the private-key.
- Why is it important ?
- Universality: any Boolean circuit can be written with Xors and Ands.
- Once you can homomorphically evaluate both a Xor and a And, you can evaluate any Boolean circuit, any computable function.

Outsourcing Computation

- The cloud receives some data m in encrypted form.
- It receives the ciphertexts c_{i} corresponding to bits m_{i}
- The cloud doesn't know the m_{i} 's
knowing m
- Eventally the cloud obtains a ciphertext c for $f(m)$
- The user decrypts c to recover $f(m)$
- The cloud learns nothing about m

Outsourcing Computation

- The cloud receives some data m in encrypted form.
- It receives the ciphertexts c_{i} corresponding to bits m_{i}
- The cloud doesn't know the m_{i} 's
- The cloud performs some computation $f(m)$, but without knowing m
- The computation of f is written as a Boolean circuit with Xors and Ands
- Every Xor $z=x \oplus y$ is homomorphically evaluated from the ciphertexts c_{x} and c_{y}, to get ciphertext c_{z}
- Every And $z^{\prime}=x \cdot y$ is homomorphically evaluated from the ciphertexts c_{x} and c_{y}, to get ciphertext $c_{z^{\prime}}$

Outsourcing Computation

- The cloud receives some data m in encrypted form.
- It receives the ciphertexts c_{i} corresponding to bits m_{i}
- The cloud doesn't know the m_{i} 's
- The cloud performs some computation $f(m)$, but without knowing m
- The computation of f is written as a Boolean circuit with Xors and Ands
- Every Xor $z=x \oplus y$ is homomorphically evaluated from the ciphertexts c_{x} and c_{y}, to get ciphertext c_{z}
- Every And $z^{\prime}=x \cdot y$ is homomorphically evaluated from the ciphertexts c_{x} and c_{y}, to get ciphertext $c_{z^{\prime}}$
- Eventally the cloud obtains a ciphertext c for $f(m)$
- The user decrypts c to recover $f(m)$
- The cloud learns nothing about m

What fully homomorphic encryption brings you

- You have a software that given the revenue, past income, headcount, etc., of a company can predict its future stock price.
- I want to know the future stock price of my company, but I don't want to disclose confidential information.
- And you don't want to give me your software containing secret formulas.

What fully homomorphic encryption brings you

- You have a software that given the revenue, past income, headcount, etc., of a company can predict its future stock price.
- I want to know the future stock price of my company, but I don't want to disclose confidential information.
- And you don't want to give me your software containing secret formulas.
- Using homomorphic encryption:
- I encrypt all the inputs using fully homomorphic encryption and send them to you in encrypted form.
- You process all my inputs, viewing your software as a circuit.
- You send me the result, still encrypted.
- I decrypt the result and get the predicted stock price.
- You didn't learn any information about my company.

What fully homomorphic encryption brings you

- You have a software that given the revenue, past income, headcount, etc., of a company can predict its future stock price.
- I want to know the future stock price of my company, but I don't want to disclose confidential information.
- And you don't want to give me your software containing secret formulas.
- Using homomorphic encryption:
- I encrypt all the inputs using fully homomorphic encryption and send them to you in encrypted form.
- You process all my inputs, viewing your software as a circuit.
- You send me the result, still encrypted.
- I decrypt the result and get the predicted stock price.
- You didn't learn any information about my company.
- More generally:
- Cool buzzwords like secure cloud computing.
- Cool mathematical challenges.

Cloud Computing

- Goal: cloud computing
- I encrypt my data before sending it to the cloud
- The cloud can still search, sort and edit my data on my behalf
- Data is kept in encrypted form in the cloud.
- The cloud learns nothing about my data
- The cloud returns encrypted answers
- that only I can decrypt

Fully Homomorphic Encryption Schemes

- 1. Breakthrough scheme of Gentry [G09], based on ideal lattices. Some optimizations by [SV10].
- Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min .

Fully Homomorphic Encryption Schemes

- 1. Breakthrough scheme of Gentry [G09], based on ideal lattices. Some optimizations by [SV10].
- Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min .
- 2. RLWE schemes [BV11a,BV11b].
- FHE without bootstrapping (modulus switching) [BGV11]
- Batch FHE [GHS12]
- Implementation with homomorphic evaluation of AES [GHS12]
- And many other papers...

Fully Homomorphic Encryption Schemes

- 1. Breakthrough scheme of Gentry [G09], based on ideal lattices. Some optimizations by [SV10].
- Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min .
- 2. RLWE schemes [BV11a,BV11b].
- FHE without bootstrapping (modulus switching) [BGV11]
- Batch FHE [GHS12]
- Implementation with homomorphic evaluation of AES [GHS12]
- And many other papers...
- 3. van Dijk, Gentry, Halevi and Vaikuntanathan's scheme over the integers [DGHV10].
- Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
- Public-key compression and modulus switching [CNT12]
- Batch and homomorphic evaluation of AES [CCKLLTY13].

The DGHV Scheme

- Ciphertext for $m \in\{0,1\}$:

$$
c=q \cdot p+2 r+m
$$

where p is the secret-key, q and r are randoms.

- Parameters:

The DGHV Scheme

- Ciphertext for $m \in\{0,1\}$:

$$
c=q \cdot p+2 r+m
$$

where p is the secret-key, q and r are randoms.

- Decryption:

$$
(c \bmod p) \bmod 2=m
$$

The DGHV Scheme

- Ciphertext for $m \in\{0,1\}$:

$$
c=q \cdot p+2 r+m
$$

where p is the secret-key, q and r are randoms.

- Decryption:

$$
(c \bmod p) \bmod 2=m
$$

- Parameters:

Homomorphic Properties of DGHV

- Addition:

$$
\begin{aligned}
& c_{1}=q_{1} \cdot p+2 r_{1}+m_{1} \\
& c_{2}=q_{2} \cdot p+2 r_{2}+m_{2}
\end{aligned} \Rightarrow c_{1}+c_{2}=q^{\prime} \cdot p+2 r^{\prime}+m_{1}+m_{2}
$$

- $c_{1}+c_{2}$ is an encryption of $m_{1}+m_{2} \bmod 2=m_{1} \oplus m_{2}$

Homomorphic Properties of DGHV

- Addition:

$$
\begin{aligned}
& c_{1}=q_{1} \cdot p+2 r_{1}+m_{1} \\
& c_{2}=q_{2} \cdot p+2 r_{2}+m_{2}
\end{aligned} \Rightarrow c_{1}+c_{2}=q^{\prime} \cdot p+2 r^{\prime}+m_{1}+m_{2}
$$

- $c_{1}+c_{2}$ is an encryption of $m_{1}+m_{2} \bmod 2=m_{1} \oplus m_{2}$
- Multiplication:

$$
\begin{aligned}
& c_{1}=q_{1} \cdot p+2 r_{1}+m_{1} \\
& c_{2}=q_{2} \cdot p+2 r_{2}+m_{2}
\end{aligned} \Rightarrow c_{1} \cdot c_{2}=q^{\prime \prime} \cdot p+2 r^{\prime \prime}+m_{1} \cdot m_{2}
$$

with

$$
r^{\prime \prime}=2 r_{1} r_{2}+r_{1} m_{2}+r_{2} m_{1}
$$

- $c_{1} \cdot c_{2}$ is an encryption of $m_{1} \cdot m_{2}$
- Noise becomes twice larger.

Somewhat homomorphic scheme

- The number of multiplications is limited.
- Noise grows with the number of multiplications.
- Noise must remain $<p$ for correct decryption.

Gentry's technique

- To build a FHE scheme, start from the somewhat homomorphic scheme, that is:
- Only a polynomial of small degree can be homomorphically applied on ciphertexts.
- Otherwise the noise becomes too large and decryption becomes incorrect.

Gentry's technique

- To build a FHE scheme, start from the somewhat homomorphic scheme, that is:
- Only a polynomial of small degree can be homomorphically applied on ciphertexts.
- Otherwise the noise becomes too large and decryption becomes incorrect.
- Then, "squash" the decryption procedure:
- express the decryption function as a low degree polynomial in the bits of the ciphertext c and the secret key sk (equivalently a boolean circuit of small depth).

Ciphertext refresh: bootstrapping

- Gentry's breakthrough idea: refresh the ciphertext using the decryption circuit homomorphically.
- Evaluate the decryption polynomial not on the bits of the ciphertext c and the secret key sk, but homomorphically on the encryption of those bits.
- Instead of recovering the bit plaintext m, one gets an encryption of this bit plaintext, i.e. yet another ciphertext for the same plaintext.

Ciphertext refresh

- Refreshed ciphertext:
- If the degree of the decryption polynomial is small enough, the resulting noise in this new ciphertext can be smaller than in the original ciphertext

Ciphertext refresh

- Refreshed ciphertext:
- If the degree of the decryption polynomial is small enough, the resulting noise in this new ciphertext can be smaller than in the original ciphertext
- Fully homomorphic encryption:
- Given two refreshed ciphertexts one can apply again the homomorphic operation (either addition or multiplication), which was not necessarily possible on the original ciphertexts because of the noise threshold.
- Using this "ciphertext refresh" procedure the number of homomorphic operations becomes unlimited and we get a fully homomorphic encryption scheme.

Public-key Encryption with DGHV

- Ciphertext

$$
c=q \cdot p+2 r+m
$$

- Public-key encryption:
for random $\varepsilon_{i} \in\{0,1\}$

Public-key Encryption with DGHV

- Ciphertext

$$
c=q \cdot p+2 r+m
$$

- Public-key: a set of τ encryptions of 0 's.

$$
x_{i}=q_{i} \cdot p+2 r_{i}
$$

- Public-key encryption:
for random $\varepsilon_{i} \in\{0,1\}$.

Public-key Encryption with DGHV

- Ciphertext

$$
c=q \cdot p+2 r+m
$$

- Public-key: a set of τ encryptions of 0's.

$$
x_{i}=q_{i} \cdot p+2 r_{i}
$$

- Public-key encryption:

$$
c=m+2 r+\sum_{i=1}^{\tau} \varepsilon_{i} \cdot x_{i}
$$

for random $\varepsilon_{i} \in\{0,1\}$.

The squashed scheme from DGHV

- The basic decryption $m \leftarrow(c \bmod p) \bmod 2$ cannot be directly expressed as a boolean circuit of low depth.

The squashed scheme from DGHV

- The basic decryption $m \leftarrow(c \bmod p) \bmod 2$ cannot be directly expressed as a boolean circuit of low depth.
- Alternative decryption formula for $c=q \cdot p+2 r+m$
- We have $q=\lfloor c / p\rceil$ and $c=q+m(\bmod 2)$
- Therefore

$$
m \leftarrow[c]_{2} \oplus[[c \cdot(1 / p)]]_{2}
$$

The squashed scheme from DGHV

- The basic decryption $m \leftarrow(c \bmod p) \bmod 2$ cannot be directly expressed as a boolean circuit of low depth.
- Alternative decryption formula for $c=q \cdot p+2 r+m$
- We have $q=\lfloor c / p\rceil$ and $c=q+m(\bmod 2)$
- Therefore

$$
m \leftarrow[c]_{2} \oplus[[c \cdot(1 / p)]]_{2}
$$

- Idea (Gentry, DGHV). Secret-share $1 / p$ as a sparse subset sum:

$$
1 / p=\sum_{i=1}^{\Theta} s_{i} \cdot y_{i}+\varepsilon
$$

Squashed decryption

- Alternative equation

$$
m \leftarrow[c]_{2} \oplus[L c \cdot(1 / p) 7]_{2}
$$

- Secret-share $1 / p$ as a sparse subset sum:
with random public κ-bit numbers y_{i}, and sparse secret $\mathrm{s}: \in\{0.1\}$
- Decryption becomes:

Squashed decryption

- Alternative equation

$$
m \leftarrow[c]_{2} \oplus[\lfloor c \cdot(1 / p)]]_{2}
$$

- Secret-share $1 / p$ as a sparse subset sum:

$$
1 / p=\sum_{i=1}^{\Theta} s_{i} \cdot y_{i}+\varepsilon
$$

with random public κ-bit numbers y_{i}, and sparse secret $s_{i} \in\{0,1\}$.

Squashed decryption

- Alternative equation

$$
m \leftarrow[c]_{2} \oplus[\lfloor c \cdot(1 / p)]]_{2}
$$

- Secret-share $1 / p$ as a sparse subset sum:

$$
1 / p=\sum_{i=1}^{\Theta} s_{i} \cdot y_{i}+\varepsilon
$$

with random public κ-bit numbers y_{i}, and sparse secret $s_{i} \in\{0,1\}$.

- Decryption becomes:

$$
m \leftarrow[c]_{2} \oplus\left[\left\lfloor\sum_{i=1}^{\Theta} s_{i} \cdot\left(y_{i} \cdot c\right) \mid\right]_{2}\right.
$$

Squashed decryption

- Alternative decryption equation:

$$
m \leftarrow[c]_{2} \oplus\left[\left|\sum_{i=1}^{\Theta} s_{i} \cdot z_{i}\right|\right]_{2}
$$

where $z_{i}=y_{i} \cdot c$ for public y_{i} 's

- Since s_{i} is sparse with $H\left(s_{i}\right)=\theta$, only $n=\left\lceil\log _{2}(\theta+1)\right\rceil$ bits of precision for $z_{i}=y_{i} \cdot c$ is required
- With $\theta=15$, only $n=4$ bits of precision for $z_{i}=y_{i} \cdot c$
- The decryption function can then be expressed as a polynomial of low degree (30) in the s_{i} 's.

The decryption circuit

Grade School addition

- The decryption equation is now:

$$
m \leftarrow c^{*}-\left\lfloor\sum_{k=1}^{\theta} q_{k}\right\rceil \quad \bmod 2
$$

- where the q_{k} 's are rational in $[0,2)$ with n bits of precision after the binary point.

Gentry's Bootstrapping

- The decryption circuit
- Can now be expressed as a polynomial of small degree d in the secret-key bits s_{i}, given the $z_{i}=c \cdot y_{i}$.

$$
m=C_{z_{i}}\left(s_{1}, \ldots, s_{\Theta}\right)
$$

- To refresh a ciphertext:
- Publish an encryption of the secret-key bits $\sigma_{i}=E_{p k}\left(s_{i}\right)$
- Homomorphically evaluate $m=C_{z_{i}}\left(s_{1}, \ldots, s_{\Theta}\right)$, using the encryptions $\sigma_{i}=E_{p k}\left(s_{i}\right)$
- We get $E_{p k}(m)$, that is a new ciphertext but possibly with less noise (a "recryption").
- The new noise has size $\simeq d \cdot \rho$ and is independent of the initial noise.

PK size and timings

Instance	λ	ρ	η	γ	pk size	Recrypt
Toy	42	27	1026	$150 \cdot 10^{3}$	77 KB	0.41 s
Small	52	41	1558	$830 \cdot 10^{3}$	437 KB	4.5 s
Medium	62	56	2128	$4.2 \cdot 10^{6}$	2.2 MB	51 s
Large	72	71	2698	$19 \cdot 10^{6}$	10.3 MB	11 min

Conclusion

- Fully homomorphic encryption is a very active research area.
- Main challenge: make FHE pratical !
- Recent developments
- FHE without bootstrapping (modulus switching) [BGV11]
- Batch FHE [GHS12]
- Implementation with homomorphic evaluation of AES [GHS12]
- FHE based on matrix addition and multiplication [GSW13]
- HElib: FHE library of Halevi and Shoup [HS14]
- Faster Bootstrapping [AP13,AP14,DM15]

