
Formal methods for software security

Thomas Jensen, INRIA

GDR Sécurité
Paris, 1 Juin 2017

01/06/2017Thomas Jensen - Formal methods for software security

Formal methods for software security

Non-interference

Information flow

Cryptographic protocols
Certification

Security types
Side channels

Security types

Secure programming

Coq

B

Refinement

Secure OS

SEL4

Confidentiality

Integrity

Availability

Computational model

Reference monitors

Enforcement

1.Basic concepts

2.Cryptographic protocols

3.Secure OS

4.Certification of software

5.Information flow

01/06/2017Thomas Jensen - Formal methods for software security

Basic security concepts
Confidentiality

• the software will not disclose my secrets … at least not
more than I'm willing to accept.

Integrity

• data and decisions are not influenced by intruders.

Availability

• software and services are there when I need them.

Security ≠ Safety

… but they are strongly related

01/06/2017Thomas Jensen - Formal methods for software security

Attacker model
Security is open-ended!

The question

Is my software secure?

must be complemented by an attacker model, stating the
threats we are up against.

Specify the attackers

• observational power (output, network messages, time,…)

• actions (code insertion, message injection,…)

• access to machine (physical, through network,…)

01/06/2017Thomas Jensen - Formal methods for software security

Enforcement mechanisms
Certification of applications

• Common Criteria,
• Formal methods for reaching upper levels.

Security-enhancing software development
• secure programming guidelines,
• secure compilation.

Static code analysis

• eg, Java's byte code verifier, information flow analysis.

Reference monitors and run-time analysis.

01/06/2017Thomas Jensen - Formal methods for software security

Cryptographic protocols

01/06/2017Thomas Jensen - Formal methods for software security

Models of cryptographic protocols

Symbolic models

• specified as a series of exchanges of messages

• assuming perfect cryptography

Example : two agents A, B

Attackers may

• intercept and re-send messages,

• encrypt and decrypt messages (with available keys).

01/06/2017Thomas Jensen - Formal methods for software security

Verification
Model

• state = current message + state of A,B, and attacker

• rewriting rules defining protocol and attacker

 ({msg}key ,…, key,..) → (msg, {msg}key ,…, key,…)

Security properties

• secrecy ("no state where attacker has the secret")

• authentication, re-play, …

• specific properties ("key may not be used on stored
content", "vote has been counted")

01/06/2017Thomas Jensen - Formal methods for software security

Tools
A variety of mature tools

• AVISPA, Tamarin, ProVerif, APTE, …

based on solid theory

• term and multi-set rewriting, Horn clauses, π-calculus, …

Interfaces for writing and animating protocols

• eg as Message Sequence Charts (SPAN).

01/06/2017Thomas Jensen - Formal methods for software security

Computational models
A model closer to reality:

• Messages: bit strings,

• Crypto primitives: functions on bit strings,

• Attacker : any probabilistic poly-time Turing machine.

Properties proved for all traces, except for a set of traces of

negligible probability.

Secrecy: attacker can distinguish secret from random number

with only infinitesimal probability.

Proofs by refinement of models.
See eg. the cryptoverif tool

01/06/2017Thomas Jensen - Formal methods for software security

Implementations of crypto protocols
Security concerns with implementations of protocols and basic
operations of cryptography.

Implementations of cryptographic primitives are prone to side
channel attacks:

• leaking secrets via timing or energy consumption,
• a challenge for implementors

Implementations of entire protocols are prone to programming
errors:

• see the Verified TLS project for building a formally verified
implementation of TLS.

01/06/2017Thomas Jensen - Formal methods for software security

Secure operating systems

01/06/2017Thomas Jensen - Formal methods for software security

Security and OS
Organized Sharing of ressources between processes

• using the same memory

• communicating via IPC

and still guarantee isolation properties.

P1 P2 P3 …

OS

Store

…
GuestOS GuestOS

Hypervisor

Store

Large, complex software - long history of security alerts.

01/06/2017Thomas Jensen - Formal methods for software security

The SEL4 project
Project run at NICTA 2004-2014.

Formal verification of Liedtke's L4 micro-kernel.

• small code base (9 K Loc),

• threads, memory management, IPC, interrupts, capability-
based access control,

• running on ARM,

• verified using the Isabelle/HOL theorem prover.

Prove:

• Functional correctness (and a lot of safety properties)

• Non-interference

01/06/2017Thomas Jensen - Formal methods for software security

SEL4: proof structure
Proof by refinement

Abstract model

Executable model

C implementation

Binary kernel

⨆

⨆

⨆

HOL

Haskell

C

HOL4 binary spec

On the "Abstract model", build
• access control model,
• integrity and confidentiality proof

200 000 lines of Isabelle/HOL proof 25 person-years

01/06/2017Thomas Jensen - Formal methods for software security

Prove & Run's ProvenCore
SEL4 uses Isabelle/HOL and Haskell

• higher-order logic and lazy functional programming is still
not main-stream development tools.

Prove & Run has developed a formally verified microkernel
ProvenCore

• refinement proof method,

• isolation properties.

using their SMART development framework:
• functional, executable specification,

• closer to programmer's intuition,

• equipped with a dedicated prover.

01/06/2017Thomas Jensen - Formal methods for software security

Certification of Java Card applications

01/06/2017Thomas Jensen - Formal methods for software security

Java Card certification
Java Card

• reduced dialect of Java for bank cards and SIM,

• no dynamic loading, reflection, floating points, threads,…

• "resource-constrained" programming practice.

Industrial context:

• Applications developed by third-parties and put on an app
store.

• Must be certified according to industry norms (eg, AFSCM*

norms for NFC applications).

• Need "light-weight" certification techniques.
*Association Française du Sans Contact Mobile

01/06/2017Thomas Jensen - Formal methods for software security

AFSCM norms/guidelines
Enforce good programming practice and resource usage

• catch exceptions, call methods with valid args,

• no recursion and almost no dynamic allocation,

• don't call method xxx.

Avoid exceptions due to

• null pointers, array indexing, class casts,

• illegal applet interaction through the firewall.

01/06/2017Thomas Jensen - Formal methods for software security

The Java Card analyser
A combination of numeric and points-to analysis

• tailored to the application domain,

• take advantage of imposed restrictions,

• precise (flow-sensitive, inter-proc, trace partitioning).

Major challenge: modelling the Java Card API.

Outcome: an abstract model of execution states

• mined by queries formalising the AFSCM norms.

01/06/2017Thomas Jensen - Formal methods for software security

Information flow analysis

01/06/2017Thomas Jensen - Formal methods for software security

Back to confidentiality

Classify data as either

• private/secret/confidential

• public

A basic security policy:

"Confidential data should not become public"

01/06/2017Thomas Jensen - Formal methods for software security

Breaking confidentiality

int secret s; // s ∈ {0,1}
int public p;

p := s; Direct flow

if s == 1 then
p := 1
else
p := 0

Indirect flow

01/06/2017Thomas Jensen - Formal methods for software security

Non-interference
Confidentiality can be formalised as non-interference:

Changes in secret values should not be publicly observable

01/06/2017Thomas Jensen - Formal methods for software security

Dynamic enforcement

Add a security level ("taint") to all data and variables

p := s; // direct flow

Security levels evolve due to assignments

p := s; // direct flow

and when we assign under secret control:

if s == 1 then
p := 1
if s == 1 then
p := 1

01/06/2017Thomas Jensen - Formal methods for software security

Secure?

Not enough to enforce confidentiality!

p := 0; q := 1;
if s == 0 then
 q := 0;
if q == 1 then
 p := 1;

int secret s; // s ∈ {0,1}
int public p,q;

Need the "no-sensitive-upgrade" principle

s=0
p=0,q=1

p=0,q=0

skip
p=0

s=1
p=0,q=1

skip

p=1,q=1
p=1

01/06/2017Thomas Jensen - Formal methods for software security

Static information flow control
Information flow types:

⊢ e : T T ⊑ Tx Tpc ⊑ Tx

Tpc ⊢ x := e assign

 ⊢ e : T Tpc ⨆ T ⊢ Si i = 1,2

Tpc ⊢ if e then S1 else S2 if

T,Tx,Tpc ∈ {public ⊑ secret}

Typing rules:

Well-typed programs are non-interferent

01/06/2017Thomas Jensen - Formal methods for software security

Declassification and side channels
How to declassify confidential data:

• what and when to declassify?

• how much to declassify (passwd, statistics) ?

Information leaks due to other channels

• timing

• energy consumption

Challenge: analysis tools to check constant-time properties of

(well-crafted) cryptographic computations.

01/06/2017Thomas Jensen - Formal methods for software security

Coda

01/06/2017Thomas Jensen - Formal methods for software security

Many more topics
Malware detection

• analysis of (obfuscated) binaries.

Access control
• formal models and enforcement.

Attack trees.

Web security
• secure web programming with JavaScript et al.

Privacy
• differential privacy (theory vs. practice),
• software in coherence with legislation (EU GDPR).

Thank you

01/06/2017Thomas Jensen - Formal methods for software security

Formal methods for software security

• Formal methods can improve the security of

software.

• Come with solid foundations and mature tools.

• More and more industrial applications.

• Technology is becoming main-stream.

Thank you

