

Hardware Security and Trust Giorgio DI NATALE giorgio.dinatale@lirmm.fr

Motivation

 Security and trust play a critical role as computing is intimately integrated in the infrastructures we depend on

- Hardware Security
 - dealing with (secret) data in hardware devices
- Hardware Trust
 - dealing with design and manufacturing of devices

HARDWARE SECURITY

Scenario

- How to protect a (digital) secret:
 - Secure storage of confidential data
 - Cryptographic capabilities
- Implementation:
 - Crypto algorithms integrated as hardware devices
 - E.g., smartcards, crypto-cores, crypto-processors, hardware security module

Implementation Attacks

Implementation Attacks – Types of Attacks

Access to secure devices storing other parties' secrets

Implementation Attacks – Types of Attacks

Side-Channel Attacks

- Based on information gained from the non-primary interface of the physical implementation of a cryptosystem
 - Timing information
 - Power consumption
 - Electromagnetic leaks
 - Sound
 - Light
 - **—** ...

Simple Power Analysis on RSA

```
Input: X, N, K=(k_{j-1}, ..., k_1, k_0)_2

Output: Z = X^K \mod N

1: Z = 1;
2: for i=j-1 downto 0 {
3: Z = Z * Z \mod N //Square
4: if (k_i==1) {
5: Z = Z * X \mod N //Multiply
6: }
7: }
```


Simple Power Analysis

- Actually not so simple...
 - Noise
 - Interrupts
 - Multi-core architectures
 - Peripherals

— ...

Countermeasures

- Goal: removing the correlation between processed data and the physical interface
- Methods:
 - Masking: adding randomness in the intermediate values and operations
 - Hiding: making side-channel independent of intermediate values and operations
 - e.g., constant power consumption

Implementation Attacks – Types of Attacks

Fault Attacks

<u>Hypothesis</u>: Injection forces a '0' on a single bit of the secret key

- 1) $C_{OK} = E(P)$
- 2) Calculate C'=E(P),while injecting a fault
- 3) If C' = C_{OK} → target bit is '0' else → target bit is '1'

Injection means

- To inject faults affecting critical paths
 - Under/over powering
 - Altering the clock
 - Altering the temperature
- To inject precise faults in space and time
 - Laser injections
 - Electro Magnetic injections

Countermeasures

- IC Packaging
- Fault detectors:

- Laser/light, bulk current
- They can generate false positives
- Error detectors, based on redundancy

Implementation Attacks – Types of Attacks

Manufacturing Process

- Manufacturing process of integrated circuit is not totally controlled:
 - Dust, physical mechanisms, spot defect
 - Process variability
 - Assemblage faults

Scan-based Design

Scan attacks presentation

Scan attacks:

Exploit observability and controllability offered by scan chains

- Principle: switch
 between functional
 and scan modes
- Goal: Retrieve
 embedded secret data

Countermeasures

- Leave the scan chain unbound
- Built-In Self-Test
- Secure Test Access Mechanism
 - Authentication (expensive)
 - No in-field debug/diagnosis
 - Not easy to integrate in design flow
- Scan Chain Encryption

Conclusions - Hardware Security

- Cryptography has +2000 years history and experience
- Hardware Security is still a young research field

HARDWARE TRUST

Counterfeiting types

- Recycled, Defective
- Overproduced
- Cloned
- Tampered

Counterfeit types Recycled

- Electronic component that is recovered from a system and then modified to be misrepresented as a new component
- Problems:
 - lower performance
 - shorter lifetime
 - damaged component

Counterfeit types Overproduced

 Overproduction occurs when foundries sell components outside of contract with the design houseparts

- Problems:
 - loss in profits for the design and IP owner
 - reliability threats since they are often not subjected to the same rigorous testing as authentic part

CLONIN

Counterfeit types Cloned

- A copy of a design, in order to eliminate the large development cost of a part
- Methods:
 - Reverse engineering
 - By obtaining IP illegally (also called IP theft)
 - With unauthorized knowledge

Counterfeit types Tampered – Hardware Trojan Horses

- A Hardware Trojan Horse is a malicious modification of an integrated circuit
 - Performed at any design or manufacturing step
- Examples:
 - Backdoors, time bombs
- A real threat?

Counterfeiting detection

- Cleaning, visual inspection
- Microscope & X Ray Inspections
- Side-Channel
- Testing

Counterfeiting prevention

- Aging detectors
- Hardware metering
- IC Camouflage
- IC Authentication
- HT Prevention

Counterfeiting prevention – Aging Detectors

- Sensors in the chip to capture the usage of the chip in the field
 - It relies on aging effects of MOSFETs to change a ring oscillator frequency in comparison with the golden one embedded in the chip.
- Techniques:
 - Fuse-based technology to record usage time
 - Differential measurement

Counterfeiting prevention – Hardware Metering

- A set of security protocols that enable the design house to achieve the post-fabrication control of the produced ICs to prevent overproduction
 - Post-Manufacturing Activation
 - Adding a Finite-State Machine (FSM) which is initially locked and can be unlocked only with the correct sequence of primary inputs
 - Logic Encryption

Aging detectors
Hardware Metering
IC Camouflage
IC Authentication
HT Prevention

Standard-cells are re-designed not to disclose their identity

- Physically Unclonable Functions (PUF)
 - Able to generate random and stable responses
- After manufacturing, each device is challenged by several random inputs
- Responses are stored in a secure database
- To authenticate the device, some of the challenges are used during mission mode

Arbiter PUF

- Delays of all the paths from input to output: nominally identical
- Reality: because of process variations, all different!

HW Tojans prevention – Split Manufacturing

- Front End Of Line (FEOL) layers (transistor and lower metal layers) are fabricated in an untrusted foundry
- Back End Of Line (BEOL)
 in a trusted low-end fab
- It is considered secure against reverse engineering as it hides the BEOL connections from an attacker in the FEOL foundry

Conclusions

- Hardware Security and Trust are big challenges
- It might become even worst because of:
 - Limited resources (IoT)
 - Safety (autonomous cars)

