Anomaly Detection with Extreme Value Theory

A. Siffer, P-A Fouque, A. Termier and C. Largouet May 30, 2017

Context

Providing better thresholds

Finding anomalies in streams

Application to intrusion detection

A more general framework

Context

--> Massive usage of the Internet

\multimap Massive usage of the Internet

More and more vulnerabilities

WannaCry ransomware used in widespread attacks all over the world

- \multimap Massive usage of the Internet
 - More and more vulnerabilities
 - More and more threats

WannaCry ransomware used in widespread attacks all over the world

- --> Massive usage of the Internet
 - · More and more vulnerabilities
 - More and more threats

 \multimap Awareness of the sensitive data and infrastructures

WannaCry ransomware used in widespread attacks all over the world

- --> Massive usage of the Internet
 - · More and more vulnerabilities
 - More and more threats

 \multimap Awareness of the sensitive data and infrastructures

⇒ Network security : a major concern

A SOLUTION

--- IDS (Intrusion Detection System)

- Monitor traffic
- Detect attacks

A SOLUTION

- → IDS (Intrusion Detection System)
 - Monitor traffic
 - Detect attacks
- ---> Current methods : rule-based
 - Work fine on common and well-known attacks
 - Cannot detect new attacks

A SOLUTION

- $-\infty$ IDS (Intrusion Detection System)
 - Monitor traffic
 - Detect attacks
- ---> Current methods : rule-based
 - Work fine on common and well-known attacks
 - Cannot detect new attacks
- --> Emerging methods : anomaly-based
 - Use the network data to estimate a normal behavior
 - \cdot Apply algorithms to detect abnormal events (\rightarrow attacks)

OVERVIEW

→ Basic scheme

OVERVIEW

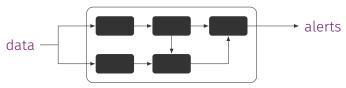
→ Basic scheme data → ALGORITHM → alerts

--> Many "standard" algorithms have been tested

→ Basic scheme

 \multimap Many "standard" algorithms have been tested

- Complex pipelines are emerging (ensemble/hybrid techniques)



• They give some information about data (scores)

- They give some information about data (scores)
- But the decision often rely on a human choice

if score>threshold then trigger alert

- They give some information about data (scores)
- But the decision often rely on a human choice

if score>threshold then trigger alert

- \multimap The thresholds are often hard-set
 - Expertise
 - Fine-tuning
 - Distribution assumption

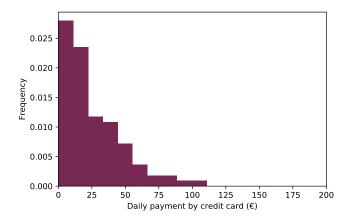
- They give some information about data (scores)
- But the decision often rely on a human choice

if score>threshold then trigger alert

- \multimap The thresholds are often hard-set
 - Expertise
 - Fine-tuning
 - Distribution assumption

-•• **Our idea**: provide dynamic threshold with a probabilistic meaning

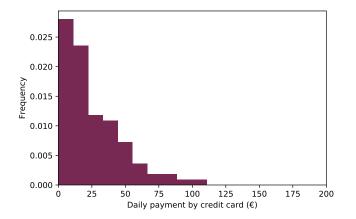
Providing better thresholds





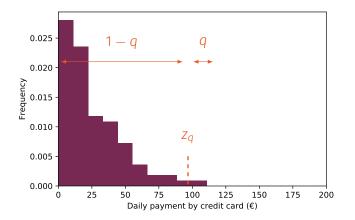
→ How to set z_q such that $\mathbb{P}(X \in > z_q) < q$?

SOLUTION 1: EMPIRICAL APPROACH



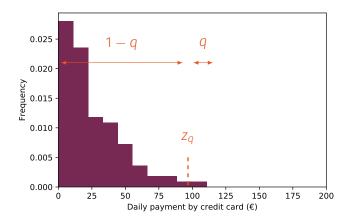
7

SOLUTION 1: EMPIRICAL APPROACH



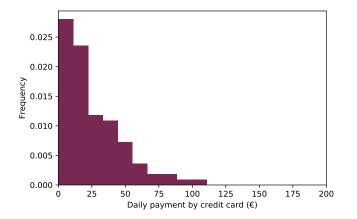
7

SOLUTION 1: EMPIRICAL APPROACH

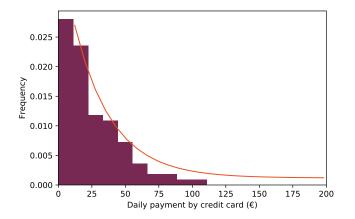


- Drawbacks: stuck in the interval, poor resolution

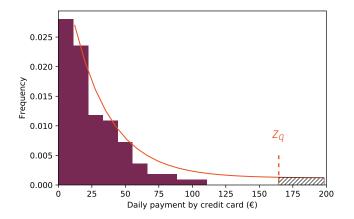
SOLUTION 2: STANDARD MODEL



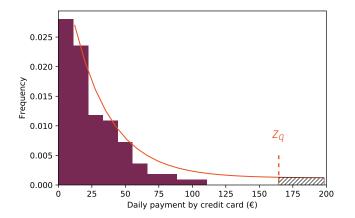
SOLUTION 2: STANDARD MODEL



SOLUTION 2: STANDARD MODEL

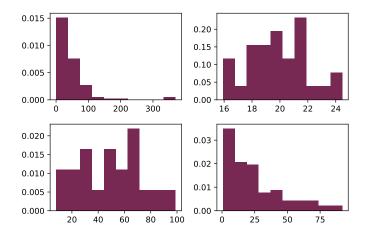


Solution 2: Standard Model



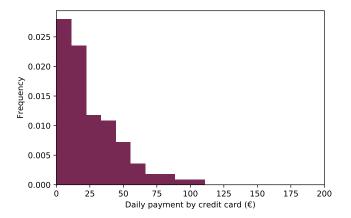
--> Drawbacks: manual step, distribution assumption

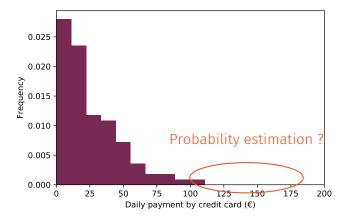
REALITIES



--> Different clients and/or temporal drift

Properties	Empirical quantile	Standard model
statistical guarantees	Yes	Yes
easy to adapt	Yes	No
high resolution	No	Yes





Extreme Value Theory

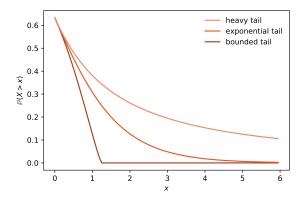
--> Main result (Fisher-Tippett-Gnedenko, 1928)

The extreme values of any distribution have nearly the same distribution (called Extreme Value Distribution)

EXTREME VALUE THEORY

--- Main result (Fisher-Tippett-Gnedenko, 1928)

The extreme values of any distribution have nearly the same distribution (called Extreme Value Distribution)



 $-\infty$ Let X_1, X_2, \ldots, X_n a sequence of i.i.d. random variables with

$$S_n = \sum_{i=1}^n X_i \qquad M_n = \max_{1 \le i \le n} (X_i)$$

 $-\infty$ Let $X_1, X_2, \ldots X_n$ a sequence of i.i.d. random variables with

$$S_n = \sum_{i=1}^n X_i \qquad M_n = \max_{1 \le i \le n} (X_i)$$

 \multimap Central Limit Theorem

$$\frac{S_n - n\mu}{\sqrt{n}} \stackrel{d}{\longrightarrow} \mathcal{N}(0, \sigma^2)$$

 $-\infty$ Let $X_1, X_2, \ldots X_n$ a sequence of i.i.d. random variables with

$$S_n = \sum_{i=1}^n X_i \qquad M_n = \max_{1 \le i \le n} (X_i)$$

→ Central Limit Theorem

$$\frac{S_n - n\mu}{\sqrt{n}} \stackrel{d}{\longrightarrow} \mathcal{N}(0, \sigma^2)$$

---> FTG Theorem

$$\frac{M_n - a_n}{b_n} \stackrel{d}{\longrightarrow} \mathrm{EVD}(\gamma)$$

 Second theorem of EVT (Pickands-Balkema-de Haan, 1974)
 The excesses over a high threshold follow a Generalized Pareto Distribution (with parameters γ, σ)

- Second theorem of EVT (Pickands-Balkema-de Haan, 1974)
 The excesses over a high threshold follow a Generalized Pareto Distribution (with parameters γ, σ)
- \rightarrow What does it imply ?
 - we have a model for extreme events
 - we can compute z_q for q as small as desired

- \multimap Get some data $X_1, X_2 \dots X_n$
- Set a high threshold t and retrieve the excesses $Y_j = X_{k_j} t$ when $X_{k_j} > t$

- \multimap Get some data $X_1, X_2 \dots X_n$
- Set a high threshold t and retrieve the excesses $\mathbf{Y}_j = \mathbf{X}_{k_j} t$ when $\mathbf{X}_{k_i} > t$
- \multimap Fit a GPD to the Y_j (\rightarrow find parameters γ, σ)

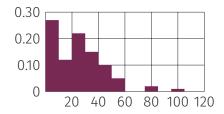
- \multimap Get some data $X_1, X_2 \dots X_n$
- Set a high threshold t and retrieve the excesses $\mathbf{Y}_j = \mathbf{X}_{k_j} t$ when $\mathbf{X}_{k_i} > t$
- \multimap Fit a GPD to the Y_j (\rightarrow find parameters γ, σ)
- \multimap Compute z_q such as $\mathbb{P}(X > z_q) < q$

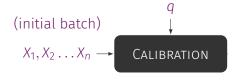
- \multimap Get some data $X_1, X_2 \dots X_n$
- Set a high threshold t and retrieve the excesses $Y_j = X_{k_j} t$ when $X_{k_i} > t$
- \multimap Fit a GPD to the Y_j (\rightarrow find parameters γ, σ)
- \multimap Compute z_q such as $\mathbb{P}(X > z_q) < q$

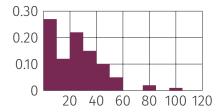
Finding anomalies in streams

(initial batch)

 $X_1, X_2 ... X_n$

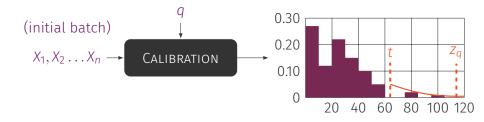






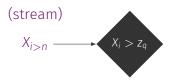


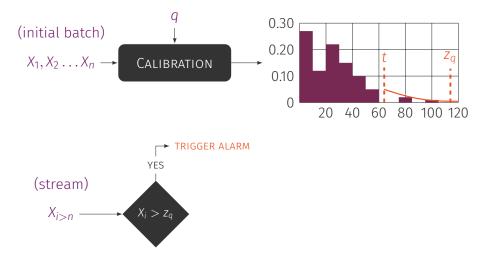


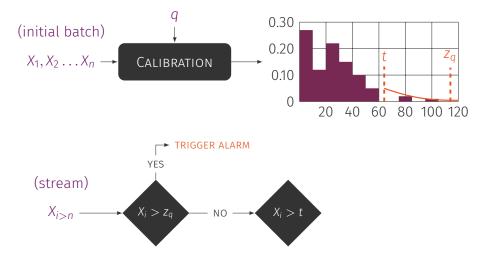


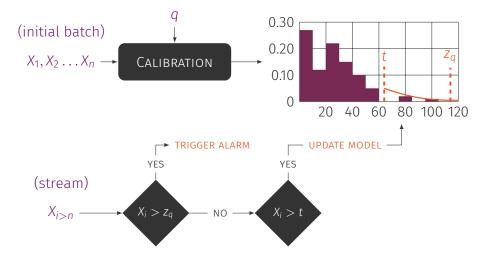
(stream)

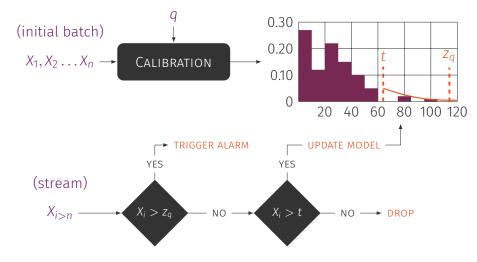
 $X_{i>n}$











Can we trust that threshold z_q ?

 \multimap An example with ground truth : a Gaussian White Noise

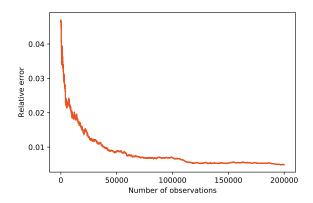
- 40 streams with 200 000 iid variables drawn from $\mathcal{N}(0,1)$
- $q = 10^{-3} \Rightarrow$ theoretical threshold $z_{th} \simeq 3.09$

Can we trust that threshold Z_q ?

 \multimap An example with ground truth : a Gaussian White Noise

- 40 streams with 200 000 iid variables drawn from $\mathcal{N}(0,1)$
- $q = 10^{-3} \Rightarrow$ theoretical threshold $z_{th} \simeq 3.09$

 \multimap Averaged relative error



Application to intrusion detection

\multimap Lack of relevant public datasets to test the algorithms ...

Lack of relevant public datasets to test the algorithms ...
 KDD99 ? See [McHugh 2000] and [Mahoney & Chan 2003]

- \multimap Lack of relevant public datasets to test the algorithms ...
- ---> KDD99 ? See [McHugh 2000] and [Mahoney & Chan 2003]
- \multimap We rather use MAWI
 - 15 min a day of real traffic (.pcap file)
 - Anomaly patterns given by the MAWILab [Fontugne *et al.* 2010] with taxonomy [Mazel et al. 2014]

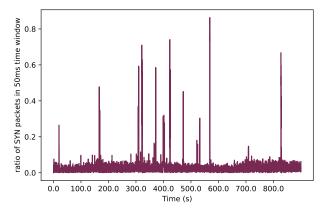
- \multimap Lack of relevant public datasets to test the algorithms ...
- --- KDD99 ? See [McHugh 2000] and [Mahoney & Chan 2003]
- → We rather use MAWI
 - 15 min a day of real traffic (.pcap file)
 - Anomaly patterns given by the MAWILab [Fontugne *et al.* 2010] with taxonomy [Mazel et al. 2014]

 \multimap Preprocessing step : raw .pcap \rightarrow NetFlow format (only metadata)

--- The ratio of SYN packets : relevant feature to detect network scan [Fernandes & Owezarski 2009]

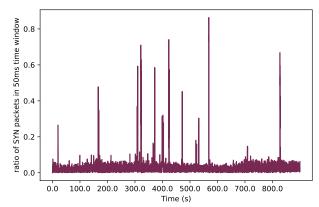
AN EXAMPLE TO DETECT NETWORK SYN SCAN

--• The ratio of SYN packets : relevant feature to detect network scan [Fernandes & Owezarski 2009]



AN EXAMPLE TO DETECT NETWORK SYN SCAN

--• The ratio of SYN packets : relevant feature to detect network scan [Fernandes & Owezarski 2009]

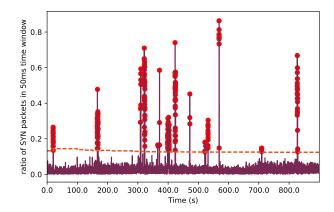


--> Goal: find peaks

- Parameters : $q = 10^{-4}$, n = 2000 (from the previous day record)

SPOT RESULTS

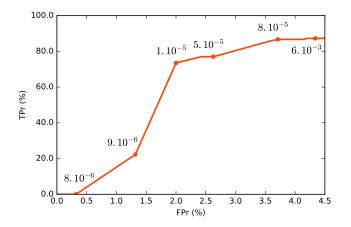
 \rightarrow Parameters : $q = 10^{-4}$, n = 2000 (from the previous day record)



 $-\infty$ The main parameter q: a False Positive regulator

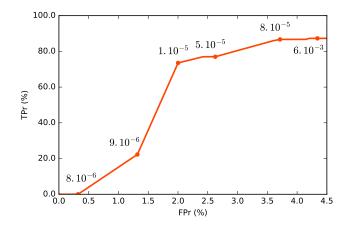
DO WE REALLY FLAG SCAN ATTACKS ?

 $-\infty$ The main parameter q: a False Positive regulator



DO WE REALLY FLAG SCAN ATTACKS ?

 $-\infty$ The main parameter q: a False Positive regulator



 $-\infty$ 86% of scan flows detected with less than 4% of FP

A more general framework

\multimap A single main parameter q

- With a probabilistic meaning $\rightarrow \mathbb{P}(X > z_q) < q$
- False Positive regulator

- \multimap A single main parameter q
 - With a probabilistic meaning $\rightarrow \mathbb{P}(X > z_q) < q$
 - False Positive regulator
- ---> Stream capable
 - Incremental learning
 - + Fast (\sim 1000 values/s)
 - Low memory usage (only the excesses)

→ SPOT

- \cdot performs dynamic thresholding without distribution assumption
- uses it to detect network anomalies

- \cdot performs dynamic thresholding without distribution assumption
- uses it to detect network anomalies
- \multimap But it could be adapted to

- \cdot performs dynamic thresholding without distribution assumption
- uses it to detect network anomalies
- \multimap But it could be adapted to
 - compute upper and lower thresholds

- \cdot performs dynamic thresholding without distribution assumption
- uses it to detect network anomalies
- \multimap But it could be adapted to
 - compute upper and lower thresholds
 - \cdot other fields

- \cdot performs dynamic thresholding without distribution assumption
- uses it to detect network anomalies
- \multimap But it could be adapted to
 - compute upper and lower thresholds
 - \cdot other fields
 - + drifting contexts (with an additional parameter) \rightarrow DSPOT

A RECENT EXAMPLE

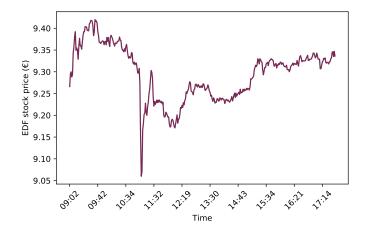
$-\infty$ Thursday the 9th of February 2017

- \multimap Thursday the 9th of February 2017
 - 9h : explosion at Flamanville nuclear plant

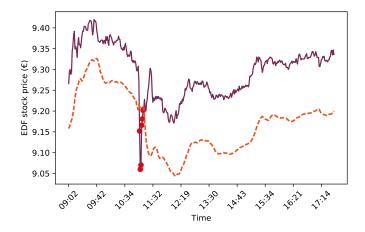
- \multimap Thursday the 9th of February 2017
 - 9h : explosion at Flamanville nuclear plant
 - **11h** : official declaration of the incident by EDF

- \multimap Thursday the 9th of February 2017
 - 9h : explosion at Flamanville nuclear plant
 - 11h : official declaration of the incident by EDF
- \multimap What about the EDF stock prices ?

EDF STOCK PRICES



EDF STOCK PRICES



CONCLUSION

--- <u>Context</u>: A great deal of work has been done to develop anomaly detection algorithms

- --- <u>Context</u>: A great deal of work has been done to develop anomaly detection algorithms
- --- <u>Problem</u>: Decision thresholds rely on either distribution assumption or expertise

- --- <u>Context</u>: A great deal of work has been done to develop anomaly detection algorithms
- --- <u>Problem</u>: Decision thresholds rely on either distribution assumption or expertise
- -• <u>Our solution</u>: Building dynamic threshold with a probabilistic meaning

- --- <u>Context</u>: A great deal of work has been done to develop anomaly detection algorithms
- ---- <u>Problem</u>: Decision thresholds rely on either distribution assumption or expertise
- --- <u>Our solution</u>: Building dynamic threshold with a probabilistic meaning
 - Application to detect network anomalies

- ---- <u>Context</u>: A great deal of work has been done to develop anomaly detection algorithms
- ---- <u>Problem</u>: Decision thresholds rely on either distribution assumption or expertise
- --- <u>Our solution</u>: Building dynamic threshold with a probabilistic meaning
 - Application to detect network anomalies
 - $\cdot\,$ But a general tool to monitor online time series in a blind way

- ---- <u>Context</u>: A great deal of work has been done to develop anomaly detection algorithms
- ---- <u>Problem</u>: Decision thresholds rely on either distribution assumption or expertise
- --- <u>Our solution</u>: Building dynamic threshold with a probabilistic meaning
 - Application to detect network anomalies
 - But a general tool to monitor online time series in a blind way
- --- <u>Future</u>: Adapt the method to higher dimensions