
Key Reconciliation Protocols for Error Correction
of Silicon PUF Responses

Brice Colombier1, Lilian Bossuet2, David Hély3

1CEA-Tech DPACA, Gardanne — France
2Laboratoire Hubert Curien, Saint-Étienne — France

3LCIS, Grenoble Institute of Technology, Valence — France

30 mai 2018

Journées Nationales 2018 Pré-GDR Sécurité Informatique

Context: need for identifiers 2/26

IoT devices

	 Mutual identification
	 Authentication

IP protection

	 ICs identification
	 IP cores identification

Need for a hardware identifier as root of trust

Outline 3/26

1 Physical Unclonable Functions

2 The CASCADE key reconciliation protocol

3 Attacks and countermeasures

4 Experimental results

5 Hardware implementation

6 Conclusion

Physical Unclonable Functions

PUFs as unique identifiers 4/26

 Title : Permutation
 Project : Present

-- File : permutation.vhd
-- Created : 2014-10-02
-- Last update: 2014-12-11
-- Standard : VHDL'93/02

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY permutation IS

 PORT (
 input : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
 output : OUT STD_LOGIC_VECTOR(63 DOWNTO 0));

END ENTITY permutation;

ARCHITECTURE rtl OF permutation IS

BEGIN -- ARCHITECTURE rtl

 output(0) <= input(0);
 output(16) <= input(1);
 output(32) <= input(2);
 output(48) <= input(3);
 output(1) <= input(4);
 output(17) <= input(5);
 output(15) <= input(60);
END ARCHITECTURE rtl;

PUF
descrip�on

Different responses to the same challenge.

Principle:

Extract entropy from
process variations.

Aim:
Provide a unique,
per-device ID, thanks
to the inter-device
uniqueness.

PUFs as unique identifiers 4/26

 c

PUF PUF PUF PUF

Different responses to the same challenge.

Principle:

Extract entropy from
process variations.

Aim:
Provide a unique,
per-device ID, thanks
to the inter-device
uniqueness.

PUFs as unique identifiers 4/26

r0 r1 r2 rn

PUF PUF PUF PUF

≠ ≠ ≠

Different responses to the same challenge.

Principle:

Extract entropy from
process variations.

Aim:
Provide a unique,
per-device ID, thanks
to the inter-device
uniqueness.

PUF architectures 5/26

RO cell

ctrl

odd number of inverters

TERO cell

PUF architecture

ctrl

sel

osc0

oscn

osc2n-1

> ?
ri

log2(n)

…

…

n-bit
counter

n-bit
counter

oscn-1

PUF architectures 6/26

SRAM PUF

The instability problem 7/26

Problem:

PUF responses to the same challenge change over time.

This variation depends on multiple parameters:
	 PUF architecture,
	 Process node,
	 Aging,
	 Temperature,
	 Environment...

à The PUF response cannot be used as a reliable identifier.

Error correction for PUF responses 8/26

Solution

Apply a technique of error correction to the PUF response

�me

t0 c1 r1

h1

(c1, r1, h1)

ECC

c1

r1

PUF

Error correction for PUF responses 8/26

Solution

Apply a technique of error correction to the PUF response

�me

t0 c1 r1

h1

(c1, r1, h1)

t1 (c1, h1)

r1

ECC

c1

r1

PUF

ECC

c1

~
h1

PUF
r1

r1=

Error correction for PUF responses 8/26

Solution

Apply a technique of error correction to the PUF response

�me

t0 c1 r1

(c1, r1)

t1

r1

c1 PUF

c1

~
PUF

=

r1

r1

c1

~ ~

r1 r1
~

The CASCADE key reconciliation
protocol

Key reconciliation protocols 9/26

CASCADE introduced in 1993 by Brassard and Salvail [1]

Quantum channel

Public discussion

Privacy amplifica�on
key

m

key

m

m

m~

m~m

m

leakage

This could be used to derive keys
from slightly different PUF responses.

[1] Gilles Brassard and Louis Salvail. “Secret-Key Reconciliation by Public Discussion”.
EUROCRYPT. 1993, pp. 410–423.

Key reconciliation protocols 9/26

CASCADE introduced in 1993 by Brassard and Salvail [1]

Quantum channel

Public discussion

Privacy amplifica�on
key

m

key

m

m

m~

m~m

m

leakage

r0 r0

rt

Enrolment

r0

rt

Error-correc�on

ID genera�on
ID

rt

ID

rt

leakage

This could be used to derive keys
from slightly different PUF responses.

[1] Gilles Brassard and Louis Salvail. “Secret-Key Reconciliation by Public Discussion”.
EUROCRYPT. 1993, pp. 410–423.

CASCADE protocol 10/26

One pass

	 Perform parity checks on blocks of the PUF response,
	 Isolate the errors using binary search and correct them,
	 Check current parity of blocks and backtrack,
	 Increase the block size and shuffle the response randomly.

Parameters

	 Initial block size,
	 Number of passes,

	 Block size multiplier.

Information leakage associated with the public discussion

For an n-bit response split into k-bit blocks:
	 Parity checks: n/k-bit leakage.
	 Binary search: log2(k)-bit leakage.

CASCADE protocol 10/26

One pass

	 Perform parity checks on blocks of the PUF response,
	 Isolate the errors using binary search and correct them,
	 Check current parity of blocks and backtrack,
	 Increase the block size and shuffle the response randomly.

Parameters

	 Initial block size,
	 Number of passes,

	 Block size multiplier.

Information leakage associated with the public discussion

For an n-bit response split into k-bit blocks:
	 Parity checks: n/k-bit leakage.
	 Binary search: log2(k)-bit leakage.

CASCADE protocol 10/26

One pass

	 Perform parity checks on blocks of the PUF response,
	 Isolate the errors using binary search and correct them,
	 Check current parity of blocks and backtrack,
	 Increase the block size and shuffle the response randomly.

Parameters

	 Initial block size,
	 Number of passes,

	 Block size multiplier.

Information leakage associated with the public discussion

For an n-bit response split into k-bit blocks:
	 Parity checks: n/k-bit leakage.
	 Binary search: log2(k)-bit leakage.

The CASCADE protocol 11/26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Blocks of even relative
parity:
∅

Blocks of odd relative
parity:
∅

Relative parity: Pr(B0, Bt) =
(m−1⊕

i=0

r0[B0[i]]
)

︸ ︷︷ ︸
Parity of B0

⊕
(m−1⊕

i=0

rt[Bt[i]]
)

︸ ︷︷ ︸
Parity of Bt

The CASCADE protocol 11/26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Correction

Blocks of even relative
parity:
∅

Blocks of odd relative
parity:
∅

Relative parity: Pr(B0, Bt) =
(m−1⊕

i=0

r0[B0[i]]
)

︸ ︷︷ ︸
Parity of B0

⊕
(m−1⊕

i=0

rt[Bt[i]]
)

︸ ︷︷ ︸
Parity of Bt

The CASCADE protocol 11/26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Correction Blocks of even relative
parity:
3210 7654

111098 15141312

Blocks of odd relative
parity:
∅

Relative parity: Pr(B0, Bt) =
(m−1⊕

i=0

r0[B0[i]]
)

︸ ︷︷ ︸
Parity of B0

⊕
(m−1⊕

i=0

rt[Bt[i]]
)

︸ ︷︷ ︸
Parity of Bt

The CASCADE protocol 11/26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 34 5 67 89 10 1112 1314 15

Correction

Shuffling

Blocks of even relative
parity:
3210 7654

111098 15141312

Blocks of odd relative
parity:
∅

Relative parity: Pr(B0, Bt) =
(m−1⊕

i=0

r0[B0[i]]
)

︸ ︷︷ ︸
Parity of B0

⊕
(m−1⊕

i=0

rt[Bt[i]]
)

︸ ︷︷ ︸
Parity of Bt

The CASCADE protocol 11/26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

Correction

Shuffling

Correction

Blocks of even relative
parity:
3210 7654

111098 15141312

Blocks of odd relative
parity:
∅

Relative parity: Pr(B0, Bt) =
(m−1⊕

i=0

r0[B0[i]]
)

︸ ︷︷ ︸
Parity of B0

⊕
(m−1⊕

i=0

rt[Bt[i]]
)

︸ ︷︷ ︸
Parity of Bt

The CASCADE protocol 11/26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

Correction

Shuffling

Correction

Blocks of even relative
parity:
3210 7654

111098 15141312

118102 16153

741412 51309

Blocks of odd relative
parity:
∅

Relative parity: Pr(B0, Bt) =
(m−1⊕

i=0

r0[B0[i]]
)

︸ ︷︷ ︸
Parity of B0

⊕
(m−1⊕

i=0

rt[Bt[i]]
)

︸ ︷︷ ︸
Parity of Bt

The CASCADE protocol 11/26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

Correction

Shuffling

Correction

Blocks of even relative
parity:
3210 7654

111098 15141312

118102 16153

741412 51309

Blocks of odd relative
parity:
∅

Relative parity: Pr(B0, Bt) =
(m−1⊕

i=0

r0[B0[i]]
)

︸ ︷︷ ︸
Parity of B0

⊕
(m−1⊕

i=0

rt[Bt[i]]
)

︸ ︷︷ ︸
Parity of Bt

The CASCADE protocol 11/26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

Correction

Shuffling

Correction

Blocks of even relative
parity:
3210 7654

118102 16153

741412 51309

Blocks of odd relative
parity:
111098 15141312

Relative parity: Pr(B0, Bt) =
(m−1⊕

i=0

r0[B0[i]]
)

︸ ︷︷ ︸
Parity of B0

⊕
(m−1⊕

i=0

rt[Bt[i]]
)

︸ ︷︷ ︸
Parity of Bt

The CASCADE protocol 11/26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

Correction

Shuffling

Correction

Extra correction

Blocks of even relative
parity:
3210 7654

118102 16153

741412 51309

Blocks of odd relative
parity:
111098 15141312

Relative parity: Pr(B0, Bt) =
(m−1⊕

i=0

r0[B0[i]]
)

︸ ︷︷ ︸
Parity of B0

⊕
(m−1⊕

i=0

rt[Bt[i]]
)

︸ ︷︷ ︸
Parity of Bt

The CASCADE protocol 11/26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

Correction

Shuffling

Correction

Extra correction

Blocks of even relative
parity:
3210 7654

118102 16153

741412 51309

Blocks of odd relative
parity:
111098 15141312

Relative parity: Pr(B0, Bt) =
(m−1⊕

i=0

r0[B0[i]]
)

︸ ︷︷ ︸
Parity of B0

⊕
(m−1⊕

i=0

rt[Bt[i]]
)

︸ ︷︷ ︸
Parity of Bt

The CASCADE protocol 11/26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

Correction

Shuffling

Correction

Extra correction

Blocks of even relative
parity:
3210 7654

111098

118102 16153

Blocks of odd relative
parity:

15141312

741412 51309

Relative parity: Pr(B0, Bt) =
(m−1⊕

i=0

r0[B0[i]]
)

︸ ︷︷ ︸
Parity of B0

⊕
(m−1⊕

i=0

rt[Bt[i]]
)

︸ ︷︷ ︸
Parity of Bt

The CASCADE protocol 11/26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

Correction

Shuffling

Correction

Extra correction

Extra correction

Blocks of even relative
parity:
3210 7654

111098

118102 16153

Blocks of odd relative
parity:

15141312

741412 51309

Relative parity: Pr(B0, Bt) =
(m−1⊕

i=0

r0[B0[i]]
)

︸ ︷︷ ︸
Parity of B0

⊕
(m−1⊕

i=0

rt[Bt[i]]
)

︸ ︷︷ ︸
Parity of Bt

The CASCADE protocol 11/26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

Correction

Shuffling

Correction

Extra correction

Extra correction

Blocks of even relative
parity:
3210 7654

111098

118102 16153

Blocks of odd relative
parity:

15141312

741412 51309

Relative parity: Pr(B0, Bt) =
(m−1⊕

i=0

r0[B0[i]]
)

︸ ︷︷ ︸
Parity of B0

⊕
(m−1⊕

i=0

rt[Bt[i]]
)

︸ ︷︷ ︸
Parity of Bt

The CASCADE protocol 11/26

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

0 12 34 5 67 89 10 1112 1314 15

Correction

Shuffling

Correction

Extra correction

Extra correction

Blocks of even relative
parity:
3210 7654

111098 15141312

118102 16153

741412 51309

Blocks of odd relative
parity:
∅

Relative parity: Pr(B0, Bt) =
(m−1⊕

i=0

r0[B0[i]]
)

︸ ︷︷ ︸
Parity of B0

⊕
(m−1⊕

i=0

rt[Bt[i]]
)

︸ ︷︷ ︸
Parity of Bt

Associated information leakage 12/26

Two ways of leaking information:
	 Relative parity computations,

	 1 bit.
	 CONFIRM executions on an n-bit block.

	 log2(n) bits.

Example:

128-bit response, ε = 0.05 → 7 errors.
	 1st pass: 8-bit blocks, 4 errors corrected.
	 2nd pass: 16-bit blocks, 3 errors corrected.

Leakage: 128
8 + 4× log2(8) + 128

16 + 3× log2(16) = 48 bits.

The final effective length of the response is 128 - 48 = 80 bits.

Associated information leakage 12/26

Two ways of leaking information:
	 Relative parity computations,

	 1 bit.
	 CONFIRM executions on an n-bit block.

	 log2(n) bits.

Example:

128-bit response, ε = 0.05 → 7 errors.
	 1st pass: 8-bit blocks, 4 errors corrected.
	 2nd pass: 16-bit blocks, 3 errors corrected.

Leakage: 128
8 + 4× log2(8) + 128

16 + 3× log2(16) = 48 bits.

The final effective length of the response is 128 - 48 = 80 bits.

Information leakage 13/26

What is the lower bound on the information leakage?

It is related to the conditional entropy [2] H(rt|r0) = nh(ε)
where ε is the error rate and n is the response length.

h(ε) = −ε.log2(ε) − (1− ε).log2(1− ε)

The best length we can expect for the final response is then:

n− nh(ε) = n(1− h(ε))

Examples:

With a 128-bit response and a 5% error rate: 91 bits.
With a 128-bit response and a 10% error rate: 67 bits.

[2] Jesus Martinez-Mateo et al. “Demystifying the Information Reconciliation Protocol
CASCADE”. . Quantum Information & Computation 15.5&6 (2015), pp. 453–477.

Parameters to tune to limit the leakage 14/26

How to set the CASCADE parameters?
	 Initial block size: depends on the error rate.
	 Number of passes: depends on the required correction success

rate.
	 Block size multiplier: x2/x4 at each pass.

Problem

The block size cannot exceed n/2.
The failure rate remains too high.

Solution

Add extra passes without increasing the block size.

Parameters to tune to limit the leakage 14/26

How to set the CASCADE parameters?
	 Initial block size: depends on the error rate.
	 Number of passes: depends on the required correction success

rate.
	 Block size multiplier: x2/x4 at each pass.

Problem

The block size cannot exceed n/2.
The failure rate remains too high.

Solution

Add extra passes without increasing the block size.

Parameters to tune to limit the leakage 14/26

How to set the CASCADE parameters?
	 Initial block size: depends on the error rate.
	 Number of passes: depends on the required correction success

rate.
	 Block size multiplier: x2/x4 at each pass.

Problem

The block size cannot exceed n/2.
The failure rate remains too high.

Solution

Add extra passes without increasing the block size.

Attacks and countermeasures

Attack 1: Device impersonation 15/26

Threat: chosen parities scenario

An attacker wants to set a chosen response value on the server side
by sending chosen parities.

r0 r0

rc

Enrolment

r0

rc

Chosen pari�es

Countermeasure:
Limit the number of modifiable bits on the server side.

Attack 1: Device impersonation 15/26

Threat: chosen parities scenario

An attacker wants to set a chosen response value on the server side
by sending chosen parities.

r0 r0

rc

Enrolment

r0

rc

Chosen pari�es

Countermeasure:
Limit the number of modifiable bits on the server side.

Attack 2: Server impersonation 16/26

Threat: chosen indexes scenario

An attacker wants to recover the PUF response by building a suffi-
ciently determined system of equations.

r0 r0

rc

Enrolment

rc

Chosen indexes

Countermeasures:
	 Limit the number of parity values that can be sent out.
	 Regenerate a new response at every protocol execution.

Attack 2: Server impersonation 16/26

Threat: chosen indexes scenario

An attacker wants to recover the PUF response by building a suffi-
ciently determined system of equations.

r0 r0

rc

Enrolment

rc

Chosen indexes

Countermeasures:
	 Limit the number of parity values that can be sent out.
	 Regenerate a new response at every protocol execution.

Experimental results

Experimental results 17/26

Several realistic PUF references:
	 RO PUF in FPGA ε = 0.9% [3].
	 TERO PUF in FPGA ε = 1.8% [4].
	 SRAM PUF in ASIC ε = 5.5% [5].

Keep 128 bits secret from a 256-bit response with failure rate < 10-6.

Simulation carried out on 2 500000 responses.

[3] Abhranil Maiti, Jeff Casarona, Luke McHale, and Patrick Schaumont. “A large scale
characterization of RO-PUF”. . HOST. 2010, pp. 94–99.
[4] Cédric Marchand, Lilian Bossuet, and Abdelkarim Cherkaoui. “Enhanced TERO-PUF

Implementations and Characterization on FPGAs”. International Symposium on FPGAs. 2016,
p. 282.
[5] Mathias Claes, Vincent van der Leest, and An Braeken. “Comparison of SRAM and FF-PUF

in 65nm Technology”. Nordic Conference on Secure IT Systems. Vol. 7161. 2011, pp. 47–64.

Leakage for ε = 1%, (RO-PUF) 18/26

0 1 3 5 10 15 20

Passes

0
16
32

64

128

235
256

F
in

al
re

sp
on

se
le

ng
th

(b
it

s)

Shannon bound
(32/64/128)-bit blocks
(16/64/128)-bit blocks

(8/32/128)-bit blocks
(4/32/128)-bit blocks

Failure rate for ε = 1%, (RO-PUF) 19/26

0 1 3 5 10 15 20

Passes

1

10−1

10−2

10−3

10−4

10−5

< 10−6

Fa
ilu

re
ra

te

(32/64/128)-bit blocks
(16/64/128)-bit blocks

(8/32/128)-bit blocks
(4/32/128)-bit blocks

Leakage for ε = 2%, (TERO-PUF) 20/26

0 1 3 5 10 15 20

Passes

0
16
32

64

128

219

256
F

in
al

re
sp

on
se

le
ng

th
(b

it
s)

Shannon bound
(32/64/128)-bit blocks
(16/64/128)-bit blocks

(8/32/128)-bit blocks
(4/32/128)-bit blocks

Failure rate for ε = 2%, (TERO-PUF) 21/26

0 1 3 5 10 15 20

Passes

1

10−1

10−2

10−3

10−4

10−5

< 10−6

Fa
ilu

re
ra

te

(32/64/128)-bit blocks
(16/64/128)-bit blocks

(8/32/128)-bit blocks
(4/32/128)-bit blocks

Leakage for ε = 5%, (SRAM-PUF) 22/26

0 1 3 5 10 15 20

Passes

0
16
32

64

128

182

256
F

in
al

re
sp

on
se

le
ng

th
(b

it
s)

Shannon bound
(32/64/128)-bit blocks
(16/64/128)-bit blocks

(8/32/128)-bit blocks
(4/32/128)-bit blocks

Failure rate for ε = 5%, (SRAM-PUF) 23/26

0 1 3 5 10 15 20

Passes

1

10−1

10−2

10−3

10−4

10−5

< 10−6

Fa
ilu

re
ra

te

(32/64/128)-bit blocks
(16/64/128)-bit blocks

(8/32/128)-bit blocks
(4/32/128)-bit blocks

Hardware implementation

Hardware architectures for the parity computation module 24/26

index
log2(n)

D Q
parity

r[0]
r[1]

r[n-2]
r[n-1]

Logic resources:
	 Spartan 3: 67 Slices
	 Spartan 6: 19 Slices
	 0 RAM bits

index log2(n)

D Q
parity

8

2:0
log2(n):3

8

n/8 data
out

addr.

RAM
Logic resources:
	 Spartan 3: 3 Slices
	 Spartan 6: 1 Slice
	 256 RAM bits

Classical error-correcting codes for PUFs 25/26

Article Construction and code(s) Logic resources (Slices) Block
Spartan 3 Spartan 6 RAM bits

[6] Reed-Muller (4, 7) 179 0

[7] Reed-Muller (2, 6) 164 192

[8] Concatenated: Repetition and Reed Muller 168 0

[9] Differential Sequence Coding and Viterbi 75 27 10752

This work: CASCADE protocol logic only 67 19 0

with RAM 3 1 256

[6] Matthias Hiller et al. “Low-Area Reed Decoding in a Generalized Concatenated Code
Construction for PUFs”. ISVLSI. 2015, pp. 143–148
[7] Roel Maes, Pim Tuyls, and Ingrid Verbauwhede. “Low-Overhead Implementation of a Soft

Decision Helper Data Algorithm for SRAM PUFs”. CHES. 2009, pp. 332–347
[8] Christoph Bösch et al. “Efficient Helper Data Key Extractor on FPGAs”. CHES. 2008,

pp. 181–197
[9] Matthias Hiller, Meng-Day Yu, and Georg Sigl. “Cherry-Picking Reliable PUF Bits With

Differential Sequence Coding”. IEEE Trans. Information Forensics and Security 11.9 (2016),
pp. 2065–2076

Conclusion

Conclusion 26/26

Compared to existing methods:
± most lightweight error-correction solution of state-of-the-art,
± can reach very low failure rates (down to 10−8),
± leakage is limited and easy to estimate,
± parameterizable and can be changed on the fly.

All code available on Gitlab:
https://gitlab.univ-st-etienne.fr/b.colombier/cascade

—Questions? —

Conclusion 26/26

Compared to existing methods:
± most lightweight error-correction solution of state-of-the-art,
± can reach very low failure rates (down to 10−8),
± leakage is limited and easy to estimate,
± parameterizable and can be changed on the fly.

All code available on Gitlab:
https://gitlab.univ-st-etienne.fr/b.colombier/cascade

—Questions? —

	Physical Unclonable Functions
	The CASCADE key reconciliation protocol
	Attacks and countermeasures
	Experimental results
	Hardware implementation
	Conclusion

