
Deep Learning Steganography

to Hide Malware in Web Content

N. Fournaise (Univ. Limoges)

H. Nguyen (ENS Lyon)

F. Recoules (CEA LIST)

T. Taburet (Centrale Lille, Univ. Lille, CNRS)

October 25, 2019

1



Steganography in a nutshell

Alice BobEve

Embedding Decoding

Message Message

Cover
Stego

Key

Message can be a malicious code

2



Steganography in a nutshell

Alice BobEve

Embedding Decoding

Message Message

Cover
Stego

Key

Message can be a malicious code

2



Polyglot file

Polyglot (Noun) :

a person who knows and is able to use several languages.

3



Stegosploit

4



Machine Learning

source: https://vas3k.com/blog/machine learning/

5



SteganoGAN’s case

Alice BobEve

Embedding Decoding

Message Message

Cover
Stego

Trained 
DNN

6



Huge claims about capacity & security

6



Can we implement a Machine Learning-based

steganographic decoder using web

technologies?

6



Disclaimer

• No GPUs in our laptops

• No Machine-Learning Background

7



Embedding decoder in a browser

8



SteganoGAN

• A Steganography algorithm from a Generative Adversarial

Network

• Unpublished but public article

• Implementation Available

• Huge claims about capacity and security!

9



Output

(a) Original image (b) Basic encoder (c) Dense encoder

10



Zoom on basic one

11



Goal

Adapt the SteganoGAN Decoder part to browser-compatible

technologies

One candidate:

12



SteganoGAN encoder

Three already trained versions of the Neural Network

13



SteganoGAN decoder

14



Essential components

Embed the decoding part only

Components:

• Tensor from Image: Python ⇒ JavaScript

• Tensor manipulation: PyTorch ⇒ TensorFlow

• Neural Network inference: PyTorch ⇒ TensorFlow ⇒
TensorFlow.js

• Message extraction: Python ⇒ JavaScript

15



Payload construction

Before the encoding part:

16



Message extraction

After the (decode) neural network inference:

17



How we improved it

• Define the separators as 4 bytes with a hamming distance < n

• Use the separators to deduce message length

• From message length, compute the most common bytes for
every message character

• zlib optional

• Reed-Solomon ECC no longer needed

• Much faster decoding for large images

Easier to translate to JS

18



How we improved it

• Define the separators as 4 bytes with a hamming distance < n

• Use the separators to deduce message length

• From message length, compute the most common bytes for
every message character

• zlib optional

• Reed-Solomon ECC no longer needed

• Much faster decoding for large images

Easier to translate to JS

18



From Pytorch to Tensorflow JS...

∀ frameworks, ∃ different format

19



From Pytorch to Tensorflow JS...

Already trained models – deal with it

19



From Pytorch to Tensorflow JS...

ONNX graph was easy to get

19



From Pytorch to Tensorflow JS...

Keras model import failed – until fixed

19



From Pytorch to Tensorflow JS...

Fixed loading but wrong inference

19



Our journey

20



Benchmarking SteganoGAN

21



Benchmark on CPU back-end (1/2)

Decoding time as a function

of image sizes

2^
16

2^
18

2^
20

n

0

10

20

30

40

50

T

Monochrome

Stealthy decoding CPU

implementation implies small

images.

22



Benchmark on CPU back-end (2/2)

CPU usage as a function of

image sizes

2^
16

2^
18

2^
20

n

0

20

40

60

80

100

CP
U

Monochrome

VRM usage as a function of

image sizes

2^
16

2^
18

2^
20

n

0

100

200

300

400

500

600

700

VM
U

(M
)

Monochrome

The footprint of CPU/VRM is not sneaky.

23



Size of javascript exploits

mean size (B) min size (B) max size (B)

without compression 427.4 42 3871

(total: 179 exploits)

uglifyjs compressed 263.8 40 2025

(42 exploits) not compressed 357.5 42 2839

• average compression gain: 26.2%

• average compressed files size: 315.4 B

24



Stegananalysis (1/2): Hand crafted features sets

Dimensions Domain

SRM 34671 Spatial

SRMQ1 12753 Spatial

maxSRM 34671 Spatial

DCTR 8000 JPEG

GFR 17000 JPEG

... + 20 others ... ...

Available on dde.binghamton.edu

25



Stegananalysis (2/2): (Low complexity) Linear Classifier

Cover

Stego

26



Steganalysis using trained adversary (SRMQ1 features set)

PE : Probability of error

100 150 200 250 300 350 400 450 500
Image size

0

10

20

30

40

50

P E

LSB
SteganoGAN-Basic

Message size

100 150 200 250 300 350 400 450 500
Image size

0

500

1000

1500

2000

2500

Pa
yl

oa
d(

bi
ts

)

LSB
SteganoGAN-Basic

PE =
1

2
(FP + MD)

27



Bonuses

28



SteganoGAN’s weakness (one of them)

Cover GAN LSB

0 50 100 150 200 250
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007
Cover

0 50 100 150 200 250
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

SteganoGAN

0 50 100 150 200 250
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007
LSB (0.1 bpp)

29



Stegosploit countermeasure (WebMaster POV)

If users are allow JPEG/PNG/... to upload file on the website :

• Place these assets on a separate domain.

• Rewrite the JPEG header to ensure no code is sneaked in

there and remove all JPEG comments.

• Refuse requests whose type is ”script” and source has a

MIME type that starts match an image format

30



Literature about Steganography/Steganalysis

1. Traditional algorithms

• Spatial-domain

• Transform-domain

2. Deep learning-based algorithms

31



Discussion

• How to achieve a balance between security and capacity?

• How to improve the quality of steganographic image from the

ML based large capacity steganography algorithm?

• How to consider complexity?

32



Conclusion

Already done

• one error away from full POC

• some clues about (SteganoGAN)

• bad performance

• bad security

Future works

• train a proper model for TensorFlow JS

• is steganography relevant for exploits?

33


	Embedding decoder in a browser
	Results

	Benchmarking SteganoGAN
	Bonuses

