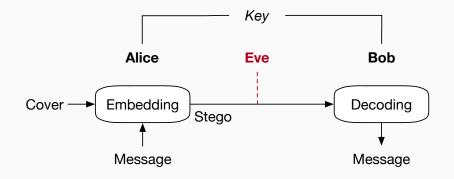
Deep Learning Steganography to Hide Malware in Web Content

- N. Fournaise
- H. Nguyen
- F. Recoules
- T. Taburet

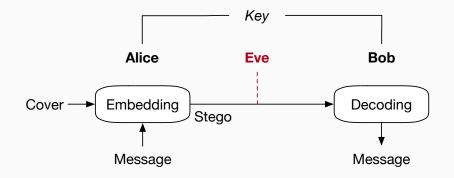
October 25, 2019

(Univ. Limoges) (ENS Lyon) (CEA LIST) (Centrale Lille, Univ. Lille, CNRS)

Steganography in a nutshell



Steganography in a nutshell

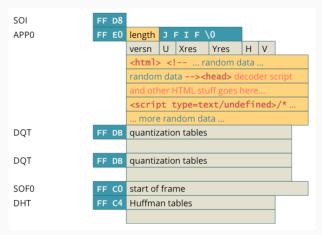


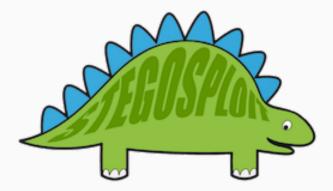
Message can be a malicious code

Polyglot file

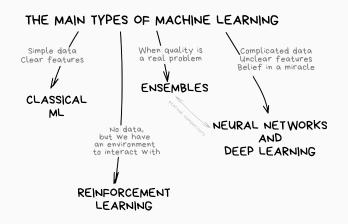
Polyglot (Noun) :

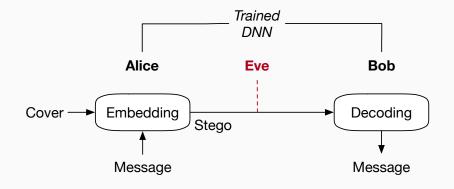
a person who knows and is able to use several languages.





source: https://vas3k.com/blog/machine_learning/





Huge claims about capacity & security

Can we implement a Machine Learning-based steganographic decoder using web technologies?

Disclaimer

- No GPUs in our laptops
- No Machine-Learning Background

Embedding decoder in a browser

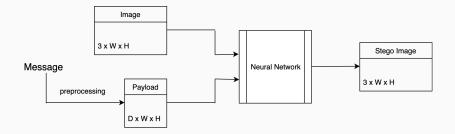
- A Steganography algorithm from a Generative Adversarial Network
- Unpublished but public article
- Implementation Available
- Huge claims about capacity and security!

(a) Original image (b) Basic encoder (c) Dense encoder

Zoom on basic one

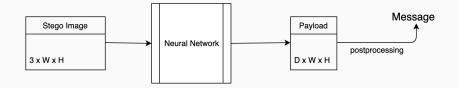
Adapt the SteganoGAN Decoder part to browser-compatible technologies

One candidate:



Three already trained versions of the Neural Network

SteganoGAN decoder

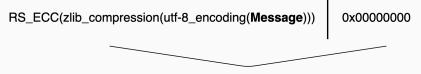


Embed the decoding part only

Components:

- Tensor from Image: Python \Rightarrow JavaScript
- Tensor manipulation: PyTorch \Rightarrow TensorFlow
- Neural Network inference: PyTorch \Rightarrow TensorFlow \Rightarrow TensorFlow.js
- Message extraction: Python \Rightarrow JavaScript

Before the encoding part:



Repeated until no more space in a vector of size D x W x H

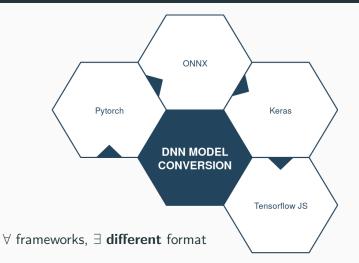
After the (decode) neural network inference:

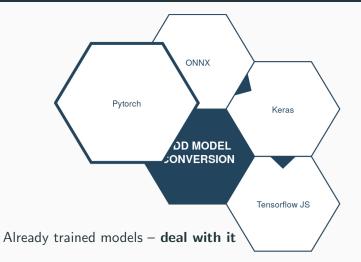
Repeated until no more space in a vector of size W x H

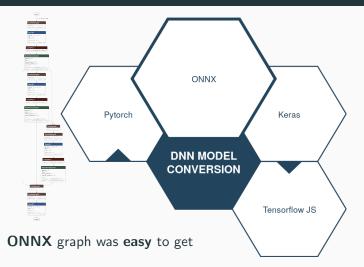
- Define the separators as 4 bytes with a *hamming_distance* < *n*
- Use the separators to deduce message length
- From message length, compute the most common bytes for every message character
 - zlib optional
 - Reed-Solomon ECC no longer needed
 - Much faster decoding for large images

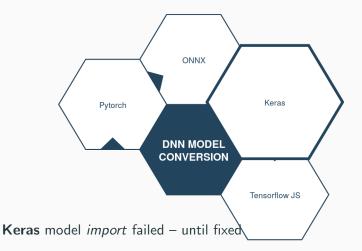
- Define the separators as 4 bytes with a *hamming_distance* < *n*
- Use the separators to deduce message length
- From message length, compute the most common bytes for every message character
 - zlib optional
 - Reed-Solomon ECC no longer needed
 - Much faster decoding for large images

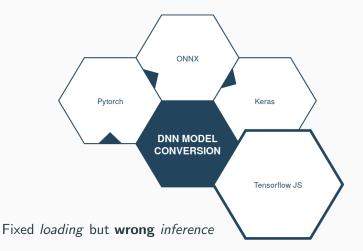
Easier to translate to JS



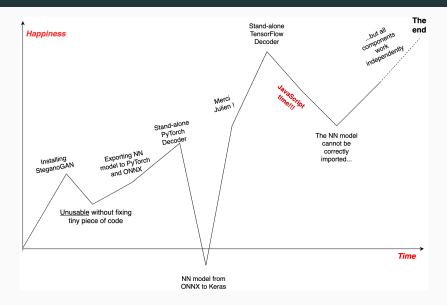








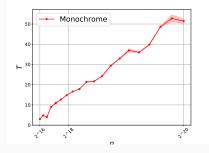
Our journey



Benchmarking SteganoGAN

Benchmark on CPU back-end (1/2)

Decoding time as a function of image sizes

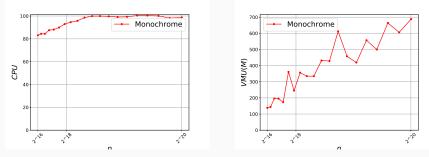


Stealthy decoding CPU implementation implies small images.

Benchmark on CPU back-end (2/2)

CPU usage as a function of image sizes

VRM usage as a function of image sizes



The footprint of CPU/VRM is not sneaky.

		mean size (B)	min size (B)	max size (B)
without compression		427.4	42	3871
(total: 179 exploits)				
uglifyjs	compressed	263.8	40	2025
(42 exploits)	not compressed	357.5	42	2839

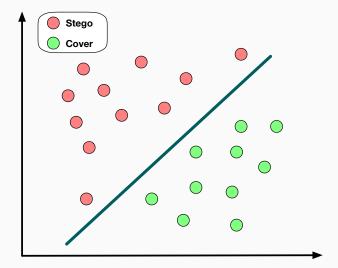
- average compression gain: 26.2%
- average compressed files size: 315.4 B

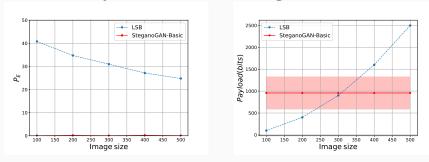
Stegananalysis (1/2): Hand crafted features sets

	Dimensions	Domain
SRM	34671	Spatial
SRMQ1	12753	Spatial
maxSRM	34671	Spatial
DCTR	8000	JPEG
GFR	17000	JPEG
\dots + 20 others		

Available on *dde.binghamton.edu*

Stegananalysis (2/2): (Low complexity) Linear Classifier





Message size

PE : Probability of error

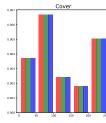
$$P_E = \frac{1}{2}(F_P + M_D)$$

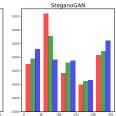
Bonuses

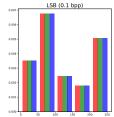
SteganoGAN's weakness (one of them)

 Cover
 GAN
 LSB

 Image: Cover
 Image: Cover
 Image: Cover







If users are allow JPEG/PNG/... to upload file on the website :

- Place these assets on a separate domain.
- Rewrite the JPEG header to ensure no code is sneaked in there and remove all JPEG comments.
- Refuse requests whose type is "script" and source has a MIME type that starts match an image format

- 1. Traditional algorithms
 - Spatial-domain
 - Transform-domain
- 2. Deep learning-based algorithms

- How to achieve a balance between security and capacity?
- How to improve the quality of steganographic image from the ML based large capacity steganography algorithm?
- How to consider complexity?

Already done

- one error away from full POC
- some clues about (SteganoGAN)
 - bad performance
 - bad security

Future works

- train a proper model for TensorFlow JS
- is steganography relevant for exploits?