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Message can be a code



Polyglot file

Polyglot (Noun) :

a person who knows and is able to use several languages.
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<script type=text/undefined>/* ...
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Stegosploit




Machine Learning

source: https://vas3k.com/blog/machine_learning/
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Huge claims about capacity & security



Can we implement a Machine Learning-based
steganographic decoder using web
technologies?



Disclaimer
e No GPUs in our laptops

e No Machine-Learning Background



Embedding decoder in a browser




SteganoGAN

A Steganography algorithm from a Generative Adversarial
Network

Unpublished but public article

Implementation Available

Huge claims about capacity and security!



(a) Original image (b) Basic encoder (c) Dense encoder
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Zoom on basic one




Adapt the SteganoGAN Decoder part to browser-compatible
technologies

One candidate:

“* TensorFlow.
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SteganoGAN encoder
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Three already trained versions of the Neural Network
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SteganoGAN decoder
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Essential components

Embed the decoding part only

Components:

e Tensor from Image: Python =- JavaScript
e Tensor manipulation: PyTorch = TensorFlow

e Neural Network inference: PyTorch = TensorFlow =
TensorFlow.js

e Message extraction: Python = JavaScript
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Payload construction

Before the encoding part:

RS_ECC(zlib_compression(utf-8_encoding(Message))) 0x00000000

_ -

Repeated until no more space in a vector of size D x W x H
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Message extraction

After the (decode) neural network inference:

— - - e e - S - T mew B,
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How we improved it

e Define the separators as 4 bytes with a hamming _distance < n

e Use the separators to deduce message length

e From message length, compute the most common bytes for
every message character
e z|lib optional
e Reed-Solomon ECC no longer needed
e Much faster decoding for large images
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How we improved it

e Define the separators as 4 bytes with a hamming _distance < n

e Use the separators to deduce message length

e From message length, compute the most common bytes for
every message character

e z|lib optional
e Reed-Solomon ECC no longer needed
e Much faster decoding for large images

Easier to translate to JS
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From Pytorch to Tensorflow JS...

DNN MODEL
CONVERSION

V frameworks, 3 different format
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From Pytorch to Tensorflow JS...

OD MODEL
~ONVERSION

Already trained models — deal with it
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From Pytorch to Tensorflow JS...

L]
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== DNN MODEL
=g CONVERSION

ONNX graph was easy to get
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From Pytorch to Tensorflow JS...

DNN MODEL
CONVERSION

Keras model import failed — until fixed
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From Pytorch to Tensorflow JS...

DNN MODEL
CONVERSION

Fixed loading but wrong inference
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Our journey
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Benchmarking SteganoGAN
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Benchmark on CPU back-end (1/2)

Decoding time as a function Stealthy decoding CPU
of image sizes implementation implies small
images.
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Benchmark on CPU back-end (2/2)

CPU usage as a function of VRM usage as a function of
image sizes image sizes
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The footprint of CPU/VRM is not sneaky.
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Size of javascript exploits

mean size (B) | min size (B) | max size (B)
without compression 427.4 42 3871
(total: 179 exploits)
uglifyjs compressed 263.8 40 2025
(42 exploits) not compressed 357.5 42 2839

e average compression gain: 26.2%

e average compressed files size: 315.4 B
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Stegananalysis (1/2): Hand crafted features sets

Dimensions | Domain
SRM 34671 Spatial
SRMQ1 12753 Spatial
maxSRM 34671 Spatial
DCTR 8000 JPEG
GFR 17000 JPEG
.. + 20 others

Available on dde.binghamton.edu
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Stegananalysis (2/2): (Low complexity) Linear Classifier

“
O Cover
@)

 J

26



Steganalysis using trained adversary (SRMQ1 features set)
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Bonuses
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SteganoGAN’s weakness (one of them)

Cover SteganoGAN LSB (0.1 bpp)
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Stegosploit countermeasure (WebMaster POV)

If users are allow JPEG/PNG/... to upload file on the website :

e Place these assets on a separate domain.

e Rewrite the JPEG header to ensure no code is sneaked in
there and remove all JPEG comments.

e Refuse requests whose type is "script” and source has a
MIME type that starts match an image format
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Literature about Steganography/Steganalysis

1. Traditional algorithms
e Spatial-domain
e Transform-domain

2. Deep learning-based algorithms
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Discussion

e How to achieve a balance between security and capacity?

e How to improve the quality of steganographic image from the
ML based large capacity steganography algorithm?

e How to consider complexity?
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Conclusion

Already done

e one error away from full POC
e some clues about (SteganoGAN)

e bad performance
e bad security

Future works
e train a proper model for TensorFlow JS

e is steganography relevant for exploits?
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