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Polyglot file

Polyglot (Noun) :

a person who knows and is able to use several languages.
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Stegosploit
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Machine Learning

source: https://vas3k.com/blog/machine learning/
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SteganoGAN’s case
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Huge claims about capacity & security
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Can we implement a Machine Learning-based

steganographic decoder using web

technologies?
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Disclaimer

• No GPUs in our laptops

• No Machine-Learning Background
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Embedding decoder in a browser
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SteganoGAN

• A Steganography algorithm from a Generative Adversarial

Network

• Unpublished but public article

• Implementation Available

• Huge claims about capacity and security!
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Output

(a) Original image (b) Basic encoder (c) Dense encoder
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Zoom on basic one
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Goal

Adapt the SteganoGAN Decoder part to browser-compatible

technologies

One candidate:
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SteganoGAN encoder

Three already trained versions of the Neural Network
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SteganoGAN decoder
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Essential components

Embed the decoding part only

Components:

• Tensor from Image: Python ⇒ JavaScript

• Tensor manipulation: PyTorch ⇒ TensorFlow

• Neural Network inference: PyTorch ⇒ TensorFlow ⇒
TensorFlow.js

• Message extraction: Python ⇒ JavaScript
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Payload construction

Before the encoding part:
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Message extraction

After the (decode) neural network inference:
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How we improved it

• Define the separators as 4 bytes with a hamming distance < n

• Use the separators to deduce message length

• From message length, compute the most common bytes for
every message character

• zlib optional

• Reed-Solomon ECC no longer needed

• Much faster decoding for large images

Easier to translate to JS
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From Pytorch to Tensorflow JS...

∀ frameworks, ∃ different format

19



From Pytorch to Tensorflow JS...

Already trained models – deal with it
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From Pytorch to Tensorflow JS...

ONNX graph was easy to get
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From Pytorch to Tensorflow JS...

Keras model import failed – until fixed
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From Pytorch to Tensorflow JS...

Fixed loading but wrong inference
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Our journey
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Benchmarking SteganoGAN
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Benchmark on CPU back-end (1/2)

Decoding time as a function

of image sizes
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Benchmark on CPU back-end (2/2)

CPU usage as a function of

image sizes
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VRM usage as a function of

image sizes
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The footprint of CPU/VRM is not sneaky.
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Size of javascript exploits

mean size (B) min size (B) max size (B)

without compression 427.4 42 3871

(total: 179 exploits)

uglifyjs compressed 263.8 40 2025

(42 exploits) not compressed 357.5 42 2839

• average compression gain: 26.2%

• average compressed files size: 315.4 B

24



Stegananalysis (1/2): Hand crafted features sets

Dimensions Domain

SRM 34671 Spatial

SRMQ1 12753 Spatial

maxSRM 34671 Spatial

DCTR 8000 JPEG

GFR 17000 JPEG

... + 20 others ... ...

Available on dde.binghamton.edu
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Stegananalysis (2/2): (Low complexity) Linear Classifier

Cover

Stego
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Steganalysis using trained adversary (SRMQ1 features set)

PE : Probability of error
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Bonuses
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SteganoGAN’s weakness (one of them)

Cover GAN LSB
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Stegosploit countermeasure (WebMaster POV)

If users are allow JPEG/PNG/... to upload file on the website :

• Place these assets on a separate domain.

• Rewrite the JPEG header to ensure no code is sneaked in

there and remove all JPEG comments.

• Refuse requests whose type is ”script” and source has a

MIME type that starts match an image format
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Literature about Steganography/Steganalysis

1. Traditional algorithms

• Spatial-domain

• Transform-domain

2. Deep learning-based algorithms
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Discussion

• How to achieve a balance between security and capacity?

• How to improve the quality of steganographic image from the

ML based large capacity steganography algorithm?

• How to consider complexity?
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Conclusion

Already done

• one error away from full POC

• some clues about (SteganoGAN)

• bad performance

• bad security

Future works

• train a proper model for TensorFlow JS

• is steganography relevant for exploits?
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