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Goal

Determine an efficient way to automatically
identify the CPU ISA based on binary code only.
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Motivations

* |tis a prerequisite for reverse engineering.
 Allows to test the binaries on its intended

platform.
e Automate a task that was performed

manually, saving precious time.



Target Architectures

Primary targets

e x36

e ARM

e PPC

e MIPS
Secondary targets

e PIC

Arc
ARcompact
Intel 8051
etc.



Possible Approaches

* Heuristics / Pattern matching
e Statistical

* Machine Learning



Approach 1:
Statistical Discrimination

Determine the distribution of some features
that differ from one platform to another.

Pros:

Jd Allow analysts to understand decision
patterns.

Cons:

. Requires time consuming feature
engineering.



1.Background :
The Shannon entropy

Mathematical function that intuitively
corresponds to the amount of information
contained in or issued by a source.

Hy(X) = —E[log, P(X = ;)] "ZPlogb( ) ZPlogb
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1.Implementation:
Finding code section

* First idea : use long sequence of zeros as

delimiters in order to find section
* Then try to guess which one of those sections

s the .text section
* Shannon entropy as a first approximation
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1.Implementation
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1.Implementation : Disassemble

e Using Capstone we disassemble all splitted

files
m Codeisisolated so we can retrieve interesting things
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1.Implementation : Disassemble 2

e \We make some statistics about this pieces of

code in each languages:

m Number of jumps
m Jump addresses
m Name and number of registers used ...

e Decision made by results
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1.Result : Analyse results

* Hypothesis:
— There is a limited number of jumps:
* No more than 10% in general

— Jumps can only be done to regular addresses
e Jump to OXFFFF can be suspicious

— First registers are the more used by compilers
* Passing arguments, etc.

— There is no multiple memory accesses in general
* Decision made from these hypothesis
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1.Results

* Funny things : unknown files seem to use
crypto stuffs ;-)
e Extraction and statistics are working

* No decision made but some ideas:
* Focus on architectures specifity
* Jumps are rare compared to branchs
* First registers are often used



Approach 1: Possible improvement

* Use other measure than Shannon’s entropy

— ldeally measure based on bytes distribution in
.text sections

e More architecture based criteria
e Add other disassemblers
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Approach 2:
Machine Learning

Pros:

d Less complex feature engineering (by
comparison with statistical)
J Good performance

Cons:

1 Difficult to interpret
1 Require large sample for training
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2.Background : Machine Learning

Training Instances Learning Algorithm Trained for task (T) Evaluation (P)

Application area:

e C(Classification,

® Regression,

® QOutlier detection,

e Information retrieval, etc

Ask
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2.Background: Classification

9%
o

Type:
* Non supervised
e Supervised
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data[, ef1:23][.2]

2.Background:

Supervised Classification:Feature selection

data[, ef1:23][.2]

0 2 4 G 2 0 2 4 G 2
data[, c(1:20[11 datal, c(1:2)][1]
Good feature selection Bad feature selection
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2.Background :
Random forest classifier

Split data into k samples

Learn model on
every sample

‘-

Combine predictions using votes



2.Process

.. Processed o

Training . Feature Model building
Training model
Data vector
Data Feature
extraction \
Training

Learning

Classification @ |

%arning Engine

Unknown] Feature \( Result

Data J Feature vector generate L(Classes)
extraction

22



2.Process : Data Traitement
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Process : Feature Extraction
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2.Implementation
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2.Result
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2.Results

3 different test benches :

e .textonly -> 97,384%
e .text + .data + .rodata ->91,963%
* Full Binary -> not enough samples to be

relevant

e Good results
 Tested on given corpus



Conclusion

Approach 1: Statistical Discrimination

e Difficult to find interesting matching points
* Robust on some architectures
e Restricted to Capstone

Approach 2: Machine Learning

* Simple process
* Robust solution
* Easy to extend



Questions ?



Bonus

* Learned new things (Machine Learning,
Python ()

 Worked in group (not really)

* Discovered Gif sur Yvette (and it’s castle)



