Automatic Identification of CPU
Instruction Sets From Binaries

by
Sebanjila Kevin Bukasa; Benjamin Farinier;
Omar Jaafor; Nisrine Jafri

REDOCS 2016

28 Octobre 2016
Gif sur Yvette

Outline

e Introduction

Approach 1 Approach 2

* Background

* Process

* Implementation
* Result

 Conclusions

Goal

Determine an efficient way to automatically
identify the CPU ISA based on binary code only.

ol o1
1010

9 | } “€
(1197 = »1"3 i o -~ CPU ISA
¢

Motivations

* |tis a prerequisite for reverse engineering.
 Allows to test the binaries on its intended

platform.
e Automate a task that was performed

manually, saving precious time.

Target Architectures

Primary targets

e x36

e ARM

e PPC

e MIPS
Secondary targets

e PIC

Arc
ARcompact
Intel 8051
etc.

Possible Approaches

* Heuristics / Pattern matching
e Statistical

* Machine Learning

Approach 1:
Statistical Discrimination

Determine the distribution of some features
that differ from one platform to another.

Pros:

Jd Allow analysts to understand decision
patterns.

Cons:

. Requires time consuming feature
engineering.

1.Background :
The Shannon entropy

Mathematical function that intuitively
corresponds to the amount of information
contained in or issued by a source.

Hy(X) = —E[log, P(X = ;)] "ZPlogb() ZPlogb

Unknown

Binary

extract

1.Process

text]

>

section JDisassembIe

ARM

xX86

|

Mips

|

PPC

SPARC

il

Analyse

Decision

1.Implementation:
Finding code section

* First idea : use long sequence of zeros as

delimiters in order to find section
* Then try to guess which one of those sections

s the .text section
* Shannon entropy as a first approximation

10

1.Implementation

01153 L ‘ {.sectionS} L {.seciions]

Traitement 1 Traitement 2
Aés Disassemble

— ¥ N o~
[[e | [ves | [pec]...[Mips]]
Traitement 1: <
e Extraction sections delimited by blocks T

of zero.
Traitement 2:
e Eliminate low entropy section using
Shannon’s Entropy

Analyse

B

ol
4

11

1.Implementation : Disassemble

e Using Capstone we disassemble all splitted

files
m Codeisisolated so we can retrieve interesting things

12

1.Implementation : Disassemble 2

e \We make some statistics about this pieces of

code in each languages:

m Number of jumps
m Jump addresses
m Name and number of registers used ...

e Decision made by results

13

1.Result : Analyse results

* Hypothesis:
— There is a limited number of jumps:
* No more than 10% in general

— Jumps can only be done to regular addresses
e Jump to OXFFFF can be suspicious

— First registers are the more used by compilers
* Passing arguments, etc.

— There is no multiple memory accesses in general
* Decision made from these hypothesis

14

1.Results

* Funny things : unknown files seem to use
crypto stuffs ;-)
e Extraction and statistics are working

* No decision made but some ideas:
* Focus on architectures specifity
* Jumps are rare compared to branchs
* First registers are often used

Approach 1: Possible improvement

* Use other measure than Shannon’s entropy

— ldeally measure based on bytes distribution in
.text sections

e More architecture based criteria
e Add other disassemblers

16

Approach 2:
Machine Learning

Pros:

d Less complex feature engineering (by
comparison with statistical)
J Good performance

Cons:

1 Difficult to interpret
1 Require large sample for training

17

2.Background : Machine Learning

Training Instances Learning Algorithm Trained for task (T) Evaluation (P)

Application area:

e C(Classification,

® Regression,

® QOutlier detection,

e Information retrieval, etc

Ask

18

2.Background: Classification

9%
o

Type:
* Non supervised
e Supervised

19

data[, ef1:23][.2]

2.Background:

Supervised Classification:Feature selection

data[, ef1:23][.2]

0 2 4 G 2 0 2 4 G 2
data[, c(1:20[11 datal, c(1:2)][1]
Good feature selection Bad feature selection

20

2.Background :
Random forest classifier

Split data into k samples

Learn model on
every sample

‘-

Combine predictions using votes

2.Process

.. Processed o

Training . Feature Model building
Training model
Data vector
Data Feature
extraction \
Training

Learning

Classification @ |

%arning Engine

Unknown] Feature \(Result

Data J Feature vector generate L(Classes)
extraction

22

2.Process : Data Traitement

A

text text + .data
Section Section

23

Process : Feature Extraction

1B ES [AD:

01

00

10 EO0 E3
00 00 AD
E4 01 30
AQ E1 4E
00 AD E1
03 00 13
BA 0Z 10
52 E3 05

e Work on binaries
* Sliding window (3 bytes)

01
E1l
D1
00
00
E3

oo

00
0o
E4
00
00
01
EB
00

EB
30
00
00
EA
AD
10
08
BA

11
El
AD
00
0o
El
=3
20
02

03
00
01
El
AD
30
01
E2
A3

EB
00
20
03
El
AD
20
08
ES

24

2.Implementation

]

Processed
Training Data

Learning

Classification

I

Feature
Extraction

Y

N

Feature Model
Vector

of Waikato

[D

Unkown
Binary

Feature
Extraction

I

Feature

Vector ResuI;S

<—— clagaified as

91.94634 %
5.0366 %
r

aq

4726
413

2.Result

ied Instances

-
L

SUmmary ===

orrectly Clasai
Incorrectly Classified Instances

=== Confusion Matrix ===

=
L

AL
[x] -
=] (]

ﬂd. =] [r- = b L

=) =) um._ﬂ.a.KSSS Eﬂ.ﬂ.ﬂ
..,..__H_ [TRRLT= B I = PR = PR = ¥ W“.u._.u._ Y=}
HM A ofl W H H ot oAl
g PR PR R O S B O R SR P
Yy
HEEEEEHEHEEEEEHEEE
L | | | | | | | | | | | Y | (Y [Y N
L I+ T R R T ST o = P Y R R T = = Y o T = PR = L ¥
L2 T = T Y e T e e O T e O e O e O e Y e O o O e Y e e A e T =
= fou]
—]
o T e O TR e T e e O e O e O O e O e O e Y Y e Y e Y e R e

i

]
P T e O e e TR e O O e O e O O O e Y e o O e T e Y - R e T
ﬂ_ﬂ.ﬂ_ﬂ_ﬂﬂ.ﬂ.ﬂ.lﬂ_ﬂ.ﬂ_ﬂ.ﬂ.ﬁﬂ_ﬂ.ﬂ_

]

P TR e O e O e TR e O e O e R e O e O e Y e O e Y Y e e A e Y

]
i
0
]
il
0
i
0
0
il
0
0
0
iz
0
0
i

0 353
0 378
a
a
a
a
a0

0
]
]
i
a
a
0
a0
0
0
3
a
1]
i
0
]
1]

O o O O O O O O oo O O O O O a QO
Sy
(18]
o O 0 O O O O oM A QO A QO O O O O
2]
-
[~ O M O A QO 0 O O O M0 O A3 6 A
— = [T LR
—l Lig]
o o o a a a O O O O O a a o o a9

0
0
0
i
i
9
0 345

289
1]
]
a
0
]
1]
1
a
1]
1]
a
a
a

0
a0
0 367 il
3
a
0
]
a
a
a
]
a
a
]
a
a
a
a0

357
a
0
0
a
0
0
a
0
0
0
0
a
0
0
a
0
a

26

2.Results

3 different test benches :

e .textonly -> 97,384%
e .text + .data + .rodata ->91,963%
* Full Binary -> not enough samples to be

relevant

e Good results
 Tested on given corpus

Conclusion

Approach 1: Statistical Discrimination

e Difficult to find interesting matching points
* Robust on some architectures
e Restricted to Capstone

Approach 2: Machine Learning

* Simple process
* Robust solution
* Easy to extend

Questions ?

Bonus

* Learned new things (Machine Learning,
Python ()

 Worked in group (not really)

* Discovered Gif sur Yvette (and it’s castle)

