Tracing pirate cards as part of the satellite video broadcasting

ULRICH AIVODJI, ALEXANDRE GONZALVEZ, PASCAL LEFEVRE, BRANDON DRAVIE

Supervisors: CÉCILE DELERABLÉE, THOMAS BAIGNÈRES

REDOCS'16 Report

28th October 2016

- 2 Performance Metrics
- 3 Strategy 1
- 4 Strategy 2
- 5 Strategy 3
- 6 Bilan & Perspective

Table of contents

- **2** Performance Metrics
- 3 Strategy 1
- 4 Strategy 2
- 5 Strategy 3
- 6 Bilan & Perspective

Problem

Satellite broadcasting

Problem

Pirate Strategies

1 strategy1(
$$r, CW_0, \ldots, CW_{n-1}$$
) $\rightarrow CW_0$

2 strategy2(
$$r, CW_0, \ldots, CW_{n-1}$$
) $\rightarrow \begin{cases} majority(CW_0, \ldots, CW_{n-1}) & \text{if } n \text{ is odd} \\ CW_0 & \text{else} \end{cases}$

3 strategy3($r, CW_0, \ldots, CW_{n-1}$) $\rightarrow CW_{r \mod n}$

Table of contents

1 Problem

2 Performance Metrics

- 3 Strategy 1
- 4 Strategy 2
- 5 Strategy 3
- 6 Bilan & Perspective

Metrics

- CPU Time (*s*)
- Collateral damage *ColD* (Avg, stddev): $\sum (1 \frac{id_i}{N})$
- QoS of the pirate (Avg): 100 * ^t/_T (T: number of normal ECMs, t: number of correct cw)

Table of contents

1 Problem

2 Performance Metrics

3 Strategy 1

- 4 Strategy 2
- 5 Strategy 3
- 6 Bilan & Perspective

General principle

- Hypothesis: The traitor always uses the same card.
- Goal: Locate the card by using a minimum number of tracking ECM. Killing the card will
- Solution: Binary search (average number of iterations *log*(*n*))

Benchmark

	CPU Time (s)	Collateral damage		QoS
		Avg	Stddev	Avg
Binary Search	54.37	14.11	8.14	0
Ternary Search	54.18	17.52	10.78	0

Table: Benchmark for 100 runs and nbCard = 10

Table of contents

- **2** Performance Metrics
- 3 Strategy 1
- 4 Strategy 2
- 5 Strategy 3
- 6 Bilan & Perspective

Notations

- M_t : pirate response to ECM tracer t
- *M*_t ∈ *L* : majority of pirate cards identifiers are < *t* (on the left side)
- $M_t \in R$: majority of pirate cards identifiers are $\geq t$ (on the right side)

Strategy 2: Why binary search works.

Proposition

Let p = 2k + 1 cards (majority vote) and t' < t two tracers ECM. $M_t \in L$ and $M_{t'} \in R \implies \exists \mathbf{Id}_P \in [t', t[.$

Algorithm

Pivots

$$p \leftarrow 0$$

$$p' \leftarrow N-1$$

Details

• Stops when |p - p'| = 1

■ ECM tracer
$$t_m \leftarrow \lfloor (p + p')/2 \rfloor$$

if $M_{t_m} \in L$, $p' \leftarrow t_m$
else $p \leftarrow t_m$

Benchmark Strategy II

	CPU Time (s)	Collateral damage		QoS
	CFU Time (s)	Avg	Stddev	Avg
Optimal approach	249.82	50.35	17.24	0
Paper approach [Tas05]	94.69	50.55	15.10	0

Table: Benchmark for 100 runs and nbCard = 10

Tamir Tassa, *Low bandwidth dynamic traitor tracing schemes*, J. Cryptol. **18** (2005), no. 2, 167–183.

Table of contents

- **2** Performance Metrics
- 3 Strategy 1
- 4 Strategy 2
- 5 Strategy 3
- 6 Bilan & Perspective

Pirate Strategy

Own a number *n* of cards, and generates randomly and uniformly an number *r* larger than *n*.

Pirate Strategy

Own a number *n* of cards, and generates randomly and uniformly an number *r* larger than *n*.

- made only of correct values cw

Pirate Strategy

Own a number *n* of cards, and generates randomly and uniformly an number *r* larger than *n*.

- made only of correct values cw
- made only of incorrect values of cw

Pirate Strategy

Own a number *n* of cards, and generates randomly and uniformly an number *r* larger than *n*.

- made only of correct values cw
- made only of incorrect values of cw
- made both of correct and incorrect values of cw

Ó

Population : N-1 cards

P pirates cards \rightarrow P - 1 intervals

Condition for dichotomy

In [A;B], if *NbrCardsFalse* > 0, then at least a pirate card is present.

With m intervals.

$$\frac{(P-m)*N}{P} \qquad \qquad N-1$$

Condition for dichotomy

In [A;B], if *NbreCardsFalse* - (nbCardsMute+0.6)*Cst > 0, then at least a pirate card is present.

Benchmark Strategy III

CPU Time (s)Collateral damage
AvgQoS
StddevHeuristic approach631.29688653563057

Table: Benchmark for 100 runs and nbCard = 10

General principle for Strategy III version II

- Return a set of small intervals that have a good probability to contain id of the traitor's cards
- Let $S = \{0, 1, 2, ..., n 1\}$ be the set of all the cards (regular user and traitors).
- Divide *S* in 100 subsets and select subsets *S*_{*j*} that pass the test.
- The test take a subset Sj = [a, b], uses a and b as input for a tracking ECM send nbSample times.
- Let *ProbA* be the chance to have negative response with tracking ECM *a* and *ProbB* be the chance to have positive response with tracking ECM *b*.
- Reject S_i if abs(ProbA ProbB) > epsilon and accept S_j otherwise.
- Repeat until $|S_i| \leq 1000$.

Table of contents

- **2** Performance Metrics
- 3 Strategy 1
- 4 Strategy 2
- 5 Strategy 3
- 6 Bilan & Perspective

Bilan

- Optimal counter attack against strategy I and II
- 2 heuristic approaches for strategy III

Perspectives

- Find theoretical bound for strategy III
- Explore game theory alternative (Bilevel optimization)

$$\min_{id_i} \sum_{i} (1 - \frac{id_i}{N})$$
s.t. $QoS(pirate) \le \epsilon$
 $id_i \in \{0, 1\}$

Bonus

Interesting tools and methods

Teamwork with efficiency (AGILE method)

■ Tools: GitHub, CollabEdit

Social

Contacts, colleagues, friends, fun...