Malware Detection in PDF Files and Evasion Attacks

Bonan Cuan¹ Aliénor Damien²,³ Claire Delaplace⁴,⁵ Mathieu Valois⁶

Under supervision of

Olivier Bettan² Boussad Addad² Marius Lombard-Platet²

¹L R S ²Thales Group ³LAAS ⁴R SA ⁵CR StAL ⁶GREYC

REDOCS 2017
Context

- A PDF file can contain
 - JavaScript Code
 - Flash objects
 - Binary Programs
 - ...

- All PDF readers have weaknesses
- Many attack vectors used by malwares
Context

- A PDF file can contain
 - JavaScript Code
 - Flash objects
 - Binary Programs
 - ...

- All PDF readers have weaknesses
- Many attack vectors used by malwares

Our Work

- Use machine learning to detect infected PDF
- Modify infected PDF to lure the classifier
- Find efficient counter-measures to this attack
1 Malware Detection using Machine Learning

2 Evasion Attacks

3 Counter-Measures
1 Malware Detection using Machine Learning

2 Evasion Attacks

3 Counter-Measures
PDF Structure

In a Nutshell

- PDF: set of objects identified by tags (features)
- Several tools for PDF analysis (e.g. PDFiD)
- 21 features are frequently used by malwares

 - based on Didier Stevens security expert’s work:
 https://blog.didierstevens.com/programs/pdf-tools/
Supervised Learning

Definition
- Inferring a function from labeled *training data*

In our case

Dataset:
- 10,000 clean PDF
- 10,000 PDF with Malware (Contagio)

Feature vector = \([\text{Tag1 occ.}, \text{Tag2 occ.}, \ldots]\)

For a given PDF

Function: \(\text{class}(X) = y\)
- \(X \in \mathbb{Z}^n\): feature vector
- \(y\): label
 - 1 if the PDF is clean
 - -1 if the PDF contains malware
Example

PDFiD 0.2.1 CLEAN_PDF_9000_files/rr-07-58.pdf

PDF Header: %PDF-1.4

obj 23
endobj 23
stream 6
endstream 6
xref 2
trailer 2
startxref 2
/Page 4
/Encrypt 0
/ObjStm 0
/JS 0
/JavaScript 0
/AA 0
/OpenAction 0
/AcroForm 0
/JBIG2Decode 0
/RichMedia 0
/Launch 0
/EmbeddedFile 0
/XFA 0
/Colors > 2^24 0

\[
f(23, 23, \ldots, 0) = 1
\]
SVM (Support Vector Machine)

- One scatterplots per label
- Find a hyperplan to delimit them
Training our SVM

- 60% of our data set used for training
- 40% used for testing

Description

- Get the feature vectors and labels for the training dataset
- Normalize independently each feature
- Create the SVM (use scikit-learn python module)
- Test with the remaining PDF

First Results

- Accuracy: 99.62%
- Malwares detected as clean: 0.34% (28/8087)
- Clean detected as malware: 0.03% (3/8087)
Model Improvements

Change the Training and Testing Sets

- Modify the splitting ratio
 - 80%/20% → better accuracy
- Use X-validation

Change the Chosen Features

- Select discriminating feature with respect to our dataset
Features Selection (Frequency)

Use every features
⇒ Too many features (computing break)

1st Method: Frequency Selection
Features Selection (Sublist)

2nd Method: Select Best Sublist

Features list: [\'/AA', '\/JS', '\/N', '\/O']

Select better sublist (Maximize Accuracy)

[\'/AA', '\/JS', '\/N', '\/O'] \rightarrow 90%
[\'/AA', '\/JS', '\/N', '\/O'] \rightarrow 92%
[\'/JS', '\/N', '\/O'] \rightarrow 67%
[\'/JS', '\/N', '\/O'] \rightarrow 92%
[\'/JS', '\/O'] \rightarrow 52%

While list is changing

Sublist: [\'/JS', '\/O']
Results

Features selection comparison

<table>
<thead>
<tr>
<th>Features selection</th>
<th>Accuracy (x-validation)</th>
<th>Nb of features</th>
</tr>
</thead>
<tbody>
<tr>
<td>No features selection (21 basics features)</td>
<td>99.48%</td>
<td>21</td>
</tr>
<tr>
<td>Sublist from 21 basis features</td>
<td>99.68%</td>
<td>12</td>
</tr>
<tr>
<td>Frequency + Sublist from all features</td>
<td>99.59%</td>
<td>18</td>
</tr>
</tbody>
</table>

Other results

- Apparently no overfitting issue
1. Malware Detection using Machine Learning

2. Evasion Attacks

3. Counter-Measures
Adversary Model

White Box Adversary

- The training dataset
- The used classification algorithm
- PDF files with malware that are detected by the SVM

Goal

Append objects to the PDF to evade the detection
Naive Attack: Increase the Value of One Component
Naive Attack: Increase the Value of One Component
Naive Attack: Increase the Value of One Component

- Increase a well chosen component to cross the border
Naive Attack: Increase the Value of One Component

- Increase a well chosen component to cross the border
Naive Attack: Increase the Value of One Component

- Increase a well chosen component to cross the border
- Add a lot of “non suspicious” objects (e.g. 50)
Naive Attack: Increase the Value of One Component

- Increase a well chosen component to cross the border
- Add a lot of “non suspicious” objects (e.g. 50)
- Easy counterattack: Add a threshold to the SVM
Naive Attack: Increase the Value of One Component

- Increase a well chosen component to cross the border
- Add a lot of “non suspicious” objects (e.g. 50)
- Easy counterattack: Add a threshold to the SVM
Second Attack: Gradient Descent

- Step by step approach (iterations)
- More components are modified
- Less objects added on the whole
Second Attack: Gradient Descent

- Step by step approach (iterations)
- More components are modified
- Less objects added on the whole
Second Attack: Gradient Descent

- Step by step approach (iterations)
- More components are modified
- Less objects added on the whole
Second Attack: Gradient Descent

- Step by step approach (iterations)
- More components are modified
- Less objects added on the whole
Test and Result of the Attack

Theoretical Attack

- 100% of the modified malware vectors detected as clean
- Gradient descent computes float vectors
Test and Result of the Attack

Theoretical Attack
- 100% of the modified malware vectors detected as clean
- Gradient descent computes float vectors

In Practice
- Forge new PDF files from gradient-descent-computed vectors
- Rounding is required \Rightarrow precision issues
- 97.5% of the newly forged PDF were detected as clean
1 Malware Detection using Machine Learning

2 Evasion Attacks

3 Counter-Measures
Vector Component Threshold

Threshold Computation

Threshold $\in \mathbb{N}^*$ because PDF objects number is discrete

1. Arbitrarily choose a threshold
2. Apply this threshold on each vector component independently
3. Check success rate of gradient descent
4. If success rate not low enough reduce threshold and go to 2)
Vector Component Threshold

Threshold Computation

Threshold $\in \mathbb{N}^*$ because PDF objects number is discrete

1. Arbitrarily choose a threshold
2. Apply this threshold on each vector component independently
3. Check success rate of gradient descent
4. If success rate not low enough reduce threshold and go to 2)

Results

- 5 \rightarrow reduce attacks by 35%
- 4 \rightarrow reduce attacks by 36%
- 3 \rightarrow reduce attacks by 38%
- 2 \rightarrow reduce attacks by 40%
- 1 \rightarrow reduce attacks by 94%
Vector Component Threshold

Threshold Computation

Threshold $\in \mathbb{N}^*$ because PDF objects number is discrete

1. Arbitrarily choose a threshold
2. Apply this threshold on each vector component independently
3. Check success rate of gradient descent
4. If success rate not low enough reduce threshold and go to 2

Results

- $5 \rightarrow$ reduce attacks by 35%
- $4 \rightarrow$ reduce attacks by 36%
- $3 \rightarrow$ reduce attacks by 38%
- $2 \rightarrow$ reduce attacks by 40%
- $1 \rightarrow$ reduce attacks by 94%

\Rightarrow Cannot perform better only with threshold
Features Selection (Remove GD)

Removing Features

- Gradient descent: only some features used
- Idea: remove features used by GD
- Work with various initial choices of features (not only the 21 from PDFiD)

Features list: ['/AA', '/JS', '/N', '/O']
Compute Descent Gradient

['/AA', '/JS', '/N', '/O'] → {'/AA':10}

While features are used to success DG

Sublist: ['/JS', '/N']
Features Selection (Remove GD)

<table>
<thead>
<tr>
<th></th>
<th>Attack prevention</th>
<th>Accuracy</th>
<th>Nb of features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treshold only</td>
<td>94.00%</td>
<td>99.81%</td>
<td>20</td>
</tr>
<tr>
<td>Remove GD only</td>
<td>99.97%</td>
<td>98.05%</td>
<td>2 (/JS and /XFA)</td>
</tr>
<tr>
<td>Threshold + Remove GD</td>
<td>99.99%</td>
<td>99.22%</td>
<td>9</td>
</tr>
</tbody>
</table>
Adversarial Learning

Principle

Supervised learning:
- Feed SVM by labeling gradient-descent-forged PDFs
- Relaunch the learning step
- Rounds until attack reduction is stable
- No need of feature selection
Adversarial Learning

Principle

Supervised learning:

- Feed SVM by labeling gradient-descent-forged PDFs
- Relaunch the learning step
- Rounds until attack reduction is stable
- No need of feature selection

Results

- Labeled forged PDF between each round
- Iterations of GD = hardness of the attack

<table>
<thead>
<tr>
<th>Round</th>
<th>SV</th>
<th>Accuracy (%)</th>
<th>Iterations of GD</th>
<th>Success rate of GD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>293</td>
<td>99.70</td>
<td>800</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>308</td>
<td>99.68</td>
<td>1800</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>312</td>
<td>99.67</td>
<td>3000</td>
<td>0</td>
</tr>
</tbody>
</table>

⇒ 3 iterations is enough for SVM to be fully resistant to GD attacks
Conclusion and Perspectives

Conclusion

- Naive SVM: easy to trick with gradient descent
- Usage of threshold: stops almost every GD attack
- Optimal features computation reduces even more the attack surface
- But reduce a bit the accuracy of the SVM

Perspectives

- Change adversary model:
 - Attacker has no knowledge of used classifier
 - Attacker uses another classifier for gradient descent
- Use deep learning like GAN (Generative Adversarial Network)
- Attack classifier with Monte-Carlo Markov Chains (MCMC) techniques
Thank you for your time!
Questions?

IM READY FOR MY PROMOTION

bonan.cuan@liris.cnrs.fr
claire.delaplace@irisa.fr
alienor.damien@laas.fr
mathieu.valois@unicaen.fr