Towards a decentralized identity management solution based on blockchain — proof of concept

Fabien Charmet Télécom SudParis, Institut Mines-Télécom, CNRS Samovar UMR 5157
Maxime Montoya Univ. Grenoble Alpes, CEA, LETI, DACLE
Mathieu Valois Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC
Wojciech Wideł Univ Rennes, INSA Rennes, CNRS, IRISA

26 October 2018
Outline

Background on public key infrastructure (PKI) and blockchains

How blockchains could enhance PKI

Existing approaches

Multichain-based certificate management

Conclusion
Background on public key infrastructure (PKI) and blockchains

How blockchains could enhance PKI

Existing approaches

Multichain-based certificate management

Conclusion
Public-key encryption

Recipient

decrypt

ciphertext

public key

encrypt

plaintext

Sender

secret key

 setBackgroundColor(0x0)

decrypt

plaintext

Sender
Public key infrastructure (PKI)

- A set of roles and procedures ensuring secure distribution of public keys.
- Based on digital certificates.
Digital certificate

Certificate authority (CA)

Entity’s data (ED)
- unique identifier
- public key pk_E
- ...

Digital certificate
- CA’s identifier
- $\text{Sign}_{sk_{CA}}(ED)$
- ...

CA certifies: pk_E is indeed the public key of the entity E.
Chain of trust

Root CA
- Root CA’s name
- Root CA’s public key
- Root CA’s signature

Intermediate CA
- Int. CA’s name
- Int. CA’s public key
- Issuer’s name (Root CA)
- Issuer’s signature

End-entity CA
- Owner’s name
- Owner’s public key
- Issuer’s name (Int. CA)
- Issuer’s signature

self-sign

reference

sign

REDOCS 2018
Revocation of certificates

- Compromised certificates are revoked by the issuing CA.
- CA adds revoked certificates to its certificate revocation list (CRL).
- CA publishes updated CRL ~every 24 hours.
Problem: single point of failure

- Corrupt CA = illegitimate certificates.
- Single CA corrupt = PKI's failure.
Problem: single point of failure

- Corrupt CA = illegitimate certificates.
- Single CA corrupt = PKI’s failure.

Possible countermeasure

- Store certificates and CRL in an external ledger.
- What kind of ledger?
Blockchain

Definition

• A public, transparent, append-only ledger.
• Created by members of a peer-to-peer network.
• Immutable and unforgeable records (blocks).
Blockchain

Structure

- **Transaction**: atomic event allowed by the blockchain protocol (‘Alice sends Bob 0.1 BTC’, ‘CA issues a certificate’).
- Transactions are **validated** and **broadcasted** throughout the network.
- Validated transactions are stored in **blocks**.
- Blocks are linked together, forming a **chain**.
- **Consensus process**.
Blockchain structure

Block

- hash of the previous block
- creator’s of the block (miner) ID
- set of transactions
- ...

REDOCS 2018
Current scenario
user:

1. connects to a website
2. browser verifies identity of webserver using PKI

Future scenario
user:

1. connects to a website
2. browser verifies identity of webserver using PKI
3. browser verifies identity if webserver using Blockchain
Background on public key infrastructure (PKI) and blockchains

How blockchains could enhance PKI

Existing approaches

Multichain-based certificate management

Conclusion
Public key infrastructure

Problems

- No way to know if CA is corrupted.
- CA producing certificates for domains they don’t own (Iran with Google).
- Some web browsers don’t check for certification revocation.

Solution: blockchain

- Another channel for verifying certificate’s validity.
- *Transparency* and *traceability*.
- Secure distributed log that cannot be altered.
- The whole chain of trust is stored.
- Revocation lists are stored.
Applications

Web browsing

- Privacy and confidentiality issue: are visited websites what they pretend to be?
- Millions of certificates, with variable lifetime

Connected cars

- Safety issue: connected or even autonomous cars might need to check that the surrounding cars are legitimate
- Thousands of certificates, with a one-week lifetime
Background on public key infrastructure (PKI) and blockchains

How blockchains could enhance PKI

Existing approaches

Multichain-based certificate management

Conclusion
Blockchain and smart contracts

Smart contracts in Ethereum

- Ethereum is a blockchain that supports **smart contracts**
- Smart contracts are special entities, written in the blockchain
 - Execution conditions predefined and agreed on
 - Execute when these conditions are met
 - Each transaction with a smart contract is a transaction in the blockchain
Existing approaches

Ethereum smart contracts

- Each certification authority has **smart contracts** that store a list of issued certificates and a revocation list.
- Specific format for certificates: **hybrid certificates**

Data fields in Bitcoin-based blockchains

- Special **OP_RETURN** field can contain arbitrary data
 - Many applications, such as Intellectual Property
- Bitcoins: maximum size of 80 bytes
- Several blockchains could be used, such as Bitcoin or Namecoin
Background on public key infrastructure (PKI) and blockchains

How blockchains could enhance PKI

Existing approaches

Multichain-based certificate management

Conclusion
Multichain-based certificate management

Multichain

- fork of the Bitcoin source code
- hugely simplifies private Blockchains creation and management
- lot of settings available
- node permission control
- arbitrary-sized data field in transactions
- very well documented
Comparison

<table>
<thead>
<tr>
<th></th>
<th>Smart contracts</th>
<th>OP_RETURN</th>
<th>Multichain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usability - customization</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Cost</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Compatibility with existing PKIs</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Permissions</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Size of certificates</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Scalability</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Design

CA
Scenario

1. final user visits a website with web browser
2. classical identity verification is used (PKI)
3. browser plug-in installed on the user browser
4. local daemon is running, waiting for queries
5. plugin-in retrieves certificates, asking to daemon if such a certificate is valid
6. displays whether certificates should be trusted or not
Demo
Use case: Let’s Encrypt

- Certification authority
- Delivered 100M certificates over 20 months
 - More than 160K per day

Application to multichain-based certificates management

- Around 280 Go of memory for 100M certificates
 - Bitcoin: around 90 Go over 20 months
- The whole blockchain has to be read when searching for a specific certificate
 - Ideally, only the delivery day would have to be checked in the blockchain
Background on public key infrastructure (PKI) and blockchains

How blockchains could enhance PKI

Existing approaches

Multichain-based certificate management

Conclusion
Problem
How to detect a malicious CA?

Solution
Add an extra channel to verify certificates using the blockchain
Future Work

- Implement PKI functions using the blockchain
- Explore the use of smart contracts
- Elaborate a business model
Feedback

• Interesting topic with no previous knowledge
• Working PoC with exciting perspectives
• Pleasant teamwork and environment
Thank you for your attention. Questions?