Towards a decentralized identity management solution based on blockchain — proof of concept

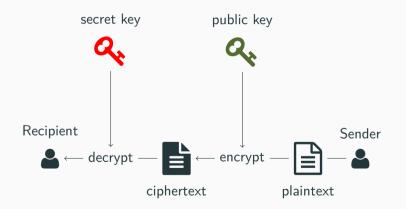
Fabien Charmet	Télécom SudParis, Institut Mines-Télécom,		
	CNRS Samovar UMR 5157		
Maxime Montoya	Univ. Grenoble Alpes, CEA, LETI, DACLE		
Mathieu Valois	Normandie Univ, UNICAEN, ENSICAEN,		
	CNRS, GREYC		
Wojciech Wideł	Univ Rennes, INSA Rennes, CNRS, IRISA		

26 October 2018

How blockchains could enhance PKI

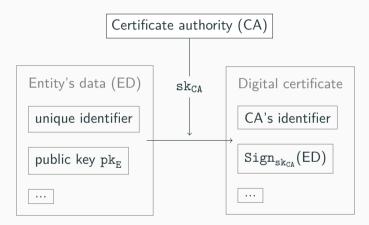
Existing approaches

Multichain-based certificate management

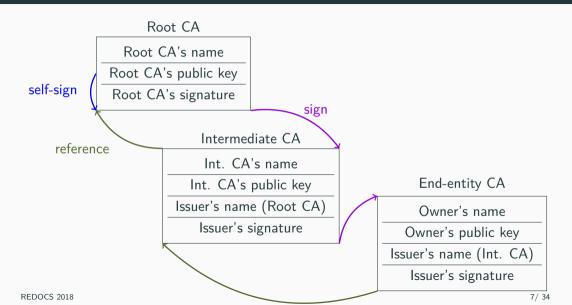

Conclusion

How blockchains could enhance PKI

Existing approaches


Multichain-based certificate management

Conclusion


Public key infrastructure (PKI)

- A set of roles and procedures ensuring secure distribution of public keys.
- Based on digital certificates.

CA certifies: pk_E is indeed the public key of the entity E.

Chain of trust

Revocation of certificates

- Compromised certificates are revoked by the issuing CA.
- CA adds revoked certificates to its certificate revocation list (CRL).
- CA publishes updated CRL ~every 24 hours.

Problem: single point of failure

- Corrupt CA = illegitimate certificates.
- Single CA corrupt = PKI's failure.

Problem: single point of failure

- Corrupt CA = illegitimate certificates.
- Single CA corrupt = PKI's failure.

Possible countermeasure

- Store certificates and CRL in an external ledger.
- What kind of ledger?

Definition

- A public, transparent, append-only ledger.
- Created by members of a peer-to-peer network.
- Immutable and unforgeable records (blocks).

Structure

- **Transaction**: atomic event allowed by the blockchain protocol ('Alice sends Bob 0.1 BTC', 'CA issues a certificate').
- Transactions are validated and broadcasted throughout the network.
- Validated transactions are stored in blocks.
- Blocks are linked together, forming a chain.
- Consensus process.

Block

hash of the previous block

creator's of the block (miner) ID

set of transactions

• • •

Current scenario user:

- 1. connects to a website
- 2. browser verifies identity of webserver using PKI

Future scenario user:

- 1. connects to a website
- 2. browser verifies identity of webserver using PKI
- 3. browser verifies identity if webserver using Blockchain

How blockchains could enhance PKI

Existing approaches

Multichain-based certificate management

Conclusion

REDOCS 2018

Problems

- No way to know if CA is corrupted.
- CA producing certificates for domains they don't own (Iran with Google).
- Some web browsers don't check for certification revocation.

Solution: blockchain

- Another channel for verifying certificate's validity.
- Transparency and traceability.
- Secure distributed log that cannot be altered.
- The whole chain of trust is stored.
- Revocation lists are stored.

REDOCS 2018

Web browsing

- Privacy and confidentiality issue: are visited websites what they pretend to be?
- Millions of certificates, with variable lifetime

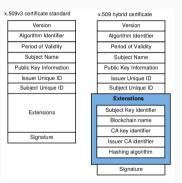
Connected cars

- Safety issue: connected or even autonomous cars might need to check that the surrounding cars are legitimate
- Thousands of certificates, with a one-week lifetime

How blockchains could enhance PKI

Existing approaches

Multichain-based certificate management


Conclusion

Smart contracts in Ethereum

- Ethereum is a blockchain that supports smart contracts
- Smart contracts are special entities, written in the blockchain
 - Execution conditions predefined and agreed on
 - Execute when these conditions are met
 - Each transaction with a smart contract is a transaction in the blockchain

Ethereum smart contracts

- Each certification authority has smart contracts that store a list of issued certificates and a revocation list
- Specific format for certificates: hybrid certificates

¹A. Yakubov et al., "A blockchain-based PKI management framework," NOMS 2018 - IEEE/IFIP Atetowerkon@perations and Management Symposium, Taipei, 2018, pp. 1-6.

Data fields in Bitcoin-based blockchains

- Special **OP_RETURN** field can contain arbitrary data
 - Many applications, such as Intellectual Property
- Bitcoins: maximum size of 80 bytes
- Several blockchains could be used, such as Bitcoin or Namecoin

How blockchains could enhance PKI

Existing approaches

Multichain-based certificate management

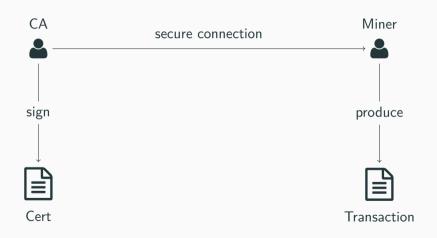
Conclusion

REDOCS 2018

Multichain

- fork of the Bitcoin source code
- hugely simplifies private Blockchains creation and management
- lot of settings available
- node permission control
- arbitrary-sized data field in transactions
- very well documented

	Smart contracts	OP_RETURN	Multichain
Usability - customization	-	-	+
Cost	-	-	+
Compatibility with existing PKIs	-	+	+
Permissions	-	-	+
Size of certificates	+	-	+
Scalability	+	-	-



Design

Design

- 1. final user visits a website with web browser
- 2. classical identity verification is used (PKI)
- 3. browser plug-in installed on the user browser
- 4. local daemon is running, waiting for queries
- 5. plugin-in retrieves certificates, asking to daemon if such a certificate is valid
- 6. displays whether certificates should be trusted or not

Use case: Let's Encrypt

- Certification authority
- Delivered 100M certificates over 20 months
 - More than 160K per day

Application to multichain-based certificates management

- Around 280 Go of memory for 100M certificates
 - Bitcoin: around 90 Go over 20 months
- The whole blockchain has to be read when searching for a specific certificate
 - Ideally, only the delivery day would have to be checked in the blockchain

How blockchains could enhance PKI

Existing approaches

Multichain-based certificate management

Conclusion

Problem How to detect a malicious CA?

Solution Add an extra channel to verify certificates using the blockchain

- Implement PKI functions using the blockchain
- Explore the use of smart contracts
- Elaborate a business model

- Interesting topic with no previous knowledge
- Working PoC with exciting perspectives
- Pleasant teamwork and environment

Thank you for your attention. Questions?