
Netzob

Language Specifications

Ref : Netzob API Oct 30, 2017

Test Platform: Language Specifications

Table of contents

1 Format Message Modeling 1
1.1 Format Message Modeling Concepts . 1

1.1.1 Definitions: Vocabulary, Symbol, Field, Variable 1
1.1.2 Abstraction and Specialization of Symbols 2

1.2 Modeling Data Types . 4
1.2.1 Data Types API . 4
1.2.2 Available Data Types . 7

1.2.2.1 Integer Type . 7
1.2.2.2 BLOB / Raw Type . 11
1.2.2.3 HexaString Type . 13
1.2.2.4 String Type . 14
1.2.2.5 BitArray Type . 16
1.2.2.6 IPv4 Type . 18
1.2.2.7 Timestamp Type . 19

1.3 Modeling Data Variables . 22
1.4 Modeling Fields . 24
1.5 Modeling Fields with Complex Structures . 28

1.5.1 Aggregate Domain . 28
1.5.2 Alternate Domain . 33
1.5.3 Repeat Domain . 34

1.6 Modeling Field Relationships . 38
1.6.1 Value Relationships . 38
1.6.2 Size Relationships . 40
1.6.3 Padding Relationships . 43
1.6.4 Checksum Relationships . 45
1.6.5 Hash Relationships . 46
1.6.6 HMAC Relationships . 47

1.7 Modeling Symbols . 48
1.8 Persistence during Specialization and Abstraction of Symbols 56

2 Sending and Receiving Messages 63
2.1 Underlying Concepts . 63
2.2 Communication Channel API . 63
2.3 Available Communication Channels . 65

2.3.1 RawEthernetChannel channel . 66
2.3.2 RawIPChannel channel . 66
2.3.3 IPChannel channel . 67
2.3.4 UDPClient channel . 68
2.3.5 TCPClient channel . 69
2.3.6 UDPServer channel . 70
2.3.7 TCPServer channel . 71
2.3.8 SSLClient channel . 72

Ref : Netzob API ©2017 AMOSSYS Page i

Test Platform: Language Specifications

2.3.9 DebugChannel channel . 73
2.4 Abstraction Layer . 73
2.5 Relationships between Messages and the Environment 78

Ref : Netzob API ©2017 AMOSSYS Page ii

Test Platform: Language Specifications

1 Format Message Modeling

The Netzob Description Language (ZDL) is the API exposed by the Netzob library to model data
structures employed in communication protocols. This textual language has been designed in order
to be easily understandable by a human. It enables the user to describe a protocol through dedicated
.zdl files, which are independent from the API and core of the library. The ZDL language has been
designed with attention to its expressiveness. In this chapter, firstly, the main concepts of the ZDL
language are presented, then its expressiveness in terms of data types, constraints and relationships
are explained.

1.1 Format Message Modeling Concepts

This chapter covers the following requirements: 20, 21, 22.

1.1.1 Definitions: Vocabulary, Symbol, Field, Variable

The vocabulary of a protocol defines the set of valid messages and their formats. In the library,
the vocabulary of a protocol consists of a list of symbols. A symbol represents all the messages
that share a similar objective from a protocol perspective. For example, the HTTP_GET symbol
would describe any HTTP request with the method GET being set. A symbol can be specialized
into a context-valid message and a message can be abstracted into a symbol.

A field describes a chunk of the symbol and is defined by a definition domain, representing the
set of values the field handles. To support complex domains, a definition domain is represented by
a tree where each vertex is a Variable. There are two kinds of variables:

• Leaf Variables which accept no children.

• Node Variables which accept one or more children variables.

Leaf Variables are the simplest variables that contain user content. There are three main leaf
variables: Data, Size and Value variables.

A Data Variable describes data whose value is of a given type. Various types are provided with
the library, such as String, Integer, Raw and BitArray.

Along with Data Variables, the definition domain of a field can embed the definition of relation-
ships. Two kinds of relationships are supported:

• Intra-symbol relationships, which denote relationships between the size or the value of a
variable and another field in the same symbol.

• Inter-symbol relationships, which denote relationships with a field of another symbol.

The main relationships supported in the library are:

Ref : Netzob API ©2017 AMOSSYS Page 1

Test Platform: Language Specifications

• Size relationships, which describe data whose value is the size of another field.

• Value relationships, which is very similar to the size relationships except that the relation-
ship applies on the value of the targeted field.

As stated before, Leaf Variables can be combined into a tree model to produce much more complex
definition domains. To achieve this, Node Variables can be used to construct complex definition
domains, such as:

• Aggregate node variable, which can be used to model a concatenation of variables.

• Alternate node variable, which can be used to model an alternative of multiple variables.

• Repeat node variable, which can be used to model a repetition of a variable.

As an illustration of these concepts, the following figure presents the definition of a Symbol struc-
tured with three Fields. The first field contains an alternative between a String Data with a constant
string and an Integer Data with a constant value. The second field is a String Data with a variable
length string. The third field depicts an Integer whose value is the size of the second string.

Symbol

FieldField Field

Data Variable

Alternate Variable

String(*)Integer(42)

Data Variable

String(“aa”)

Data Variable Size Variable

Symbol

Field structure of the
symbol

Variable tree of
fields

Types of leaf
variables

Integer()

Fig. 1.1: Example of Symbol definition and relationships with Field and Variable objects.

1.1.2 Abstraction and Specialization of Symbols

The use of a symbolic model is required to represent the vocabulary of a protocol in a compact
way. However, as the objective of this platform is to analyze the robustness of a target implemen-
tation, this implies that the testing tool should be able to exchange messages with this target. We
therefore need to abstract received messages into symbols that can be used by the protocol model.
Conversely, we also need to specialize symbols produced by the protocol model into valid mes-
sages. To achieve this, we use an abstraction method (ABS) and a specialization (SPE) method.

Ref : Netzob API ©2017 AMOSSYS Page 2

Test Platform: Language Specifications

As illustrated in the following figure, these methods play the role of an interface between the
symbolic protocol model and a communication channel on which concrete messages transit.

Fig. 1.2: Abstraction and Specialization methods are interfaces between the protocol symbols and
the wire messages.

To compute or verify the constraints and relationships that participate in the definition of the fields,
the library relies on a Memory. This memory stores the value of previously captured or emitted
fields. More precisely, the memory contains all the variables that are needed according to the field
definition during the abstraction and specialization processes.

Ref : Netzob API ©2017 AMOSSYS Page 3

Test Platform: Language Specifications

1.2 Modeling Data Types

The library enables the modeling of the following data types:

• Integer: The Integer type is a wrapper for the Python integer object with the capability to
express more constraints regarding the sign, endianness and unit size.

• HexaString: The type HexaString enables to describe a sequence of bytes of arbitrary sizes,
with a hexastring notation (e.g. aabbcc).

• BLOB / Raw: The type Raw enables to describe a sequence of bytes of arbitrary sizes, with
a raw notation (e.g. \xaa\xbb\xcc).

• String: The type String enables to describe a field that contains sequence of String charac-
ters.

• BitArray: The type BitArray enables to describe a field that contains a sequence of bits of
arbitrary sizes.

• IPv4: The type IPv4 enables to encode a raw python in an IPv4 representation, and con-
versely to decode an IPv4 into a raw object.

• Timestamp: The type Timestamp enables to define dates in a specific format (such as Win-
dows, Unix or MacOS X formats).

1.2.1 Data Types API

Each data type provides the following API:

class AbstractType(typeName, value, size=(None, None), unitSize=None, endian-
ness=None, sign=None)

AbstractType is the abstract class of all the classes that represents netzob types.

A type defines a definition domain as a unique value or specified with specific rules. For
instance, an integer under a specific interval, a string with a number of chars and an IPv4 of
a specific netmask.

The constructor for an AbstractType expects some parameters:

Parameters

• typeName – The name of the type (we highly recommand the use of
__class__.__name__).

• value – The current value of the type instance.

• size – The size in bits that this value takes.

• unitSize – The unitsize of the current value. Values must be one of
UnitSize.SIZE_*. If None, the value is the default one.

Ref : Netzob API ©2017 AMOSSYS Page 4

Test Platform: Language Specifications

Note: value and size attributes are mutually exclusive. Setting both values raises an
Exception.

The following unit sizes are available:

• UnitSize.SIZE_1

• UnitSize.SIZE_4

• UnitSize.SIZE_8 (default value)

• UnitSize.SIZE_16

• UnitSize.SIZE_24

• UnitSize.SIZE_32

• UnitSize.SIZE_64

Parameters

• endianness (Endianness, optional) – The endianness of the cur-
rent value. Values must be Endianness.BIG or Endianness.LITTLE. If
None, the value is the default one.

The following endianness are available:

– Endianness.BIG (default value)

– Endianness.LITTLE

• sign (Sign, optional) – The sign of the current value. Values must be
Sign.SIGNED or Sign.UNSIGNED. If None, the value is the default one.

The following signs are available:

– Sign.SIGNED (default value)

– Sign.UNSIGNED

Internal representation of Type objects

Regarding the internal representation of variables, the Python module bitarray is used,
thus allowing to specify objects at the bit granularity. As an example, the following code
show how to access the internal representation of the value of an Integer object:

>>> from netzob.all import *
>>> i = Integer(20)
>>> print(i)
Integer=20 ((None, None))
>>> i.value
bitarray('00010100')

Ref : Netzob API ©2017 AMOSSYS Page 5

https://docs.python.org/3/library/exceptions.html#Exception

Test Platform: Language Specifications

convert(typeClass, dst_unitSize=None, dst_endianness=None, dst_sign=None)
Convert the current data type in a destination type specified in parameter.

Parameters

• typeClass (AbstractType, required) – The Netzob type class to
which the current data must be converted.

• dst_unitSize (UnitSize, optional) – The unitsize of the desti-
nation value. Values must be one of UnitSize.SIZE_*. If None, the
value is the default one (UnitSize.SIZE_8).

• dst_endianness (Endianness, optional) – The endianness of
the destination value. Values must be Endianness.BIG or Endian-
ness.LITTLE. If None, the value is the default one (Endianness.BIG).

• dst_sign (Sign, optional) – The sign of the destination. Values
must be Sign.SIGNED or Sign.UNSIGNED. If None, the value is the
default one (Sign.SIGNED).

Returns The converted current value in the specified data type.

Return type AbstractType

generate(generationStrategy=None)
Generates a random data that respects the current data type.

Returns The value produced.

Return type bitarray

>>> from netzob.all import *
>>> a = String(nbChars=20)
>>> l = a.generate()
>>> len(l)
160
>>> a = HexaString(nbBytes=20)
>>> l = a.generate()
>>> len(l)
160
>>> a = HexaString(b"aabbccdd")
>>> a.generate()
bitarray('10101010101110111100110011011101')

Some data types can have specific attributes regarding their endianness, sign and unit size. Values
supported for those attributes are available through Python enumerations:

class Endianness
Enum class used to specify the endianness of a type.

BIG = 'big'
Endianness.BIG can be used to specify the endianness of a type.

LITTLE = 'little'
Endianness.LITTLE can be used to specify the endianness of a type.

Ref : Netzob API ©2017 AMOSSYS Page 6

Test Platform: Language Specifications

class Sign
Enum class used to specify the sign of a type.

SIGNED = 'signed'
Sign.SIGNED can be used to specify the sign of a type.

UNSIGNED = 'unsigned'
Sign.UNISGNED can be used to specify the sign of a type.

class UnitSize
Enum class used to specify the unit size of a type (i.e. the space in bits that a unitary element
takes).

SIZE_1 = 1
UnitSize.SIZE_1 can be used to specify the unit size of a type.

SIZE_4 = 4
UnitSize.SIZE_4 can be used to specify the unit size of a type.

SIZE_8 = 8
UnitSize.SIZE_8 can be used to specify the unit size of a type.

SIZE_16 = 16
UnitSize.SIZE_16 can be used to specify the unit size of a type.

SIZE_24 = 24
UnitSize.SIZE_24 can be used to specify the unit size of a type.

SIZE_32 = 32
UnitSize.SIZE_32 can be used to specify the unit size of a type.

SIZE_64 = 64
UnitSize.SIZE_64 can be used to specify the unit size of a type.

1.2.2 Available Data Types

Supported data types are described in details in this chapter.

1.2.2.1 Integer Type

This chapter covers the following requirements: 23, 24.

In the API, the definition of an integer type is done through the Integer class.

class Integer(value=None, interval=None, unitSize=UnitSize.SIZE_8, endian-
ness=Endianness.BIG, sign=Sign.SIGNED)

The Integer class enables to represent an integer, with the capability to express constraints
regarding the sign, the endianness and the unit size.

The Integer constructor expects some parameters:

Ref : Netzob API ©2017 AMOSSYS Page 7

Test Platform: Language Specifications

Parameters

• value – The current value of the type instance.

• interval – The interval of permitted values for the Integer. This in-
formation is used to compute the size of the Integer.

• unitSize – The unitsize of the current value. Values must be one of
UnitSize.SIZE_* (see below for supported unit sizes). The default value
is UnitSize.SIZE_8.

Note: value and interval attributes are mutually exclusive. Setting both values raises
an Exception.

The following unit sizes are available:

• UnitSize.SIZE_1

• UnitSize.SIZE_4

• UnitSize.SIZE_8 (default unit size)

• UnitSize.SIZE_16

• UnitSize.SIZE_24

• UnitSize.SIZE_32

• UnitSize.SIZE_64

Parameters

• endianness (Endianness, optional) – The endianness of the cur-
rent value. Values must be Endianness.BIG or Endianness.LITTLE. The
default value is Endianness.BIG.

The following endianness are available:

– Endianness.BIG (default endianness)

– Endianness.LITTLE

• sign (Sign, optional) – The sign of the current value. Values must be
Sign.SIGNED or Sign.UNSIGNED. The default value is Sign.SIGNED.

The following signs are available:

– Sign.SIGNED (default sign)

– Sign.UNSIGNED

The Integer class provides the following public variables:

Ref : Netzob API ©2017 AMOSSYS Page 8

https://docs.python.org/3/library/exceptions.html#Exception

Test Platform: Language Specifications

Variables

• typeName (str) – The name of the implemented data type.

• value (bitarray) – The current value of the instance. This value is
represented under the bitarray format.

• size (a tuple (int, int) or int) – The size of the expected data type
defined by a tuple (min integer, max integer). Instead of a tuple, an
integer can be used to represent both min and max value.

• unitSize (str) – The unitSize of the current value.

• endianness (str) – The endianness of the current value.

• sign (str) – The sign of the current value.

Examples of Integer object instantiations

The following example shows how to define an integer encoded in sequences of 8 bits and
with a default value of 12 (thus producing \x0c):

>>> from netzob.all import *
>>> i = Integer(value=12, unitSize=UnitSize.SIZE_8)
>>> i.generate().tobytes()
b'\x0c'

The following example shows how to define an integer encoded in sequences of 32 bits and
with a default value of 12 (thus producing \x00\x00\x00\x0c):

>>> from netzob.all import *
>>> i = Integer(value=12, unitSize=UnitSize.SIZE_32)
>>> i.generate().tobytes()
b'\x00\x00\x00\x0c'

The following example shows how to define an integer encoded in sequences of 32 bits in
little endian with a default value of 12 (thus producing \x0c\x00\x00\x00):

>>> from netzob.all import *
>>> i = Integer(value=12, unitSize=UnitSize.SIZE_32, endianness=Endianness.LITTLE)
>>> i.generate().tobytes()
b'\x0c\x00\x00\x00'

The following example shows how to define a signed integer encoded in sequences of 16 bits
with a default value of -12 (thus producing \xff\xf4):

>>> from netzob.all import *
>>> i = Integer(value=-12, sign=Sign.SIGNED, unitSize=UnitSize.SIZE_16)
>>> i.generate().tobytes()
b'\xff\xf4'

Examples of pre-defined Integer types

For convenience, common specific integer types are also available, with pre-defined values of
unitSize, sign and endianness attributes. They are used to shorten calls of singular
definitions.

Ref : Netzob API ©2017 AMOSSYS Page 9

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Test Platform: Language Specifications

For example, a 16-bit little-endian unsigned Integer is classically defined like this:

>>> from netzob.all import *
>>> i = Integer(42,
... unitSize=UnitSize.SIZE_16,
... sign=Sign.UNSIGNED,
... endianness=Endianness.LITTLE)

Could also be called in an equivalent form:

>>> from netzob.all import *
>>> i = uint16le(42)

There is an equivalence between these two integers, for every internal value of the type:

>>> from netzob.all import *
>>> i1 = Integer(42,
... unitSize=UnitSize.SIZE_16,
... sign=Sign.UNSIGNED,
... endianness=Endianness.LITTLE)
>>> i2 = uint16le(42)
>>> i1, i2
(42, 42)
>>> i1 == i2
True

But a comparison between two specific integers of different kind will always fail, even if
their values look equivalent:

>>> from netzob.all import *
>>> i1 = uint16le(42)
>>> i2 = uint32le(42)
>>> i1 == i2
False

And even when the concrete value seems identical, the integer objects are not:

>>> from netzob.all import *
>>> i1 = uint16le(42)
>>> i2 = int16le(42)
>>> i1, i2
(42, 42)
>>> print(i1, i2)
Integer=42 ((None, None)) Integer=42 ((None, None))
>>> i1 == i2
False

Integer raw representations

The following examples show how to create integers with different raw representation, de-
pending on data type attributes. In these examples, we create a 16 bits little endian, a 16 bits
big endian, a 32 bits little endian and a 32 bits big endian:

>>> from netzob.all import *
>>> int16le(1234).value.tobytes()
b'\xd2\x04'
>>> int16be(1234).value.tobytes()
b'\x04\xd2'
>>> int32le(1234).value.tobytes()

Ref : Netzob API ©2017 AMOSSYS Page 10

Test Platform: Language Specifications

b'\xd2\x04\x00\x00'
>>> int32be(1234).value.tobytes()
b'\x00\x00\x04\xd2'

Representation of Integer type objects

The following examples show the representation of Integer objects with and without default
value.

>>> from netzob.all import *
>>> i = int16le(value=12)
>>> str(i)
'Integer=12 ((None, None))'

>>> from netzob.all import *
>>> i = int16le()
>>> str(i)
'Integer=None ((-32768, 32767))'

Encoding of Integer type objects

The following examples show the encoding of Integer objects with and without default value.

>>> from netzob.all import *
>>> i = int32le(value=12)
>>> repr(i)
'12'

>>> from netzob.all import *
>>> i = int32le()
>>> repr(i)
'None'

1.2.2.2 BLOB / Raw Type

In the API, the definition of a BLOB type is done through the Raw class.

This chapter covers the following requirements: 25.

class Raw(value, nbBytes, alphabet)
This class defines a Raw type.

The Raw type describes a sequence of bytes of arbitrary sizes.

The Raw constructor expects some parameters:

Parameters

• value (bitarray or bytes, optional) – The current value of the type
instance.

• nbBytes (an int or a tuple with the min and the max size specified as
int, optional) – The size in bytes that this value can take.

Ref : Netzob API ©2017 AMOSSYS Page 11

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Test Platform: Language Specifications

• alphabet (a list of bytes, optional) – The alphabet can be used to
limit the bytes that can participate in the domain value.

Note: value and nbBytes attributes are mutually exclusive. Setting both values raises
an Exception.

The Raw class provides the following public variables:

Variables

• typeName (str) – The name of the implemented data type.

• value (bitarray) – The current value of the instance. This value is
represented under the bitarray format.

• size (a tuple (int, int) or int) – The size in bits of the expected
data type defined by a tuple (min, max). Instead of a tuple, an integer
can be used to represent both min and max value.

• alphabet (a list of bytes) – The alphabet can be used to limit the
bytes that can participate in the domain value.

The following example shows how to define a six bytes long raw object, and the used of the
generation method to produce a value:

>>> from netzob.all import *
>>> from netzob.all import *
>>> r = Raw(nbBytes=6)
>>> len(r.generate().tobytes())
6

It is possible to define a range regarding the valid size of the raw object:

>>> from netzob.all import *
>>> r = Raw(nbBytes=(2, 20))
>>> 2 <= len(r.generate().tobytes()) <= 20
True

The following example shows the specification of a raw constant:

>>> from netzob.all import *
>>> r = Raw(b'\x01\x02\x03')
>>> print(r)
Raw=b'\x01\x02\x03' ((None, None))

The alphabet optional argument can be used to limit the bytes that can participate in the
domain value:

>>> from netzob.all import *
>>> r = Raw(nbBytes=100, alphabet=[b"t", b"o"])
>>> data = r.generate().tobytes()
>>> data_set = set(data)
>>> data_set
{116, 111}

Ref : Netzob API ©2017 AMOSSYS Page 12

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#bytes

Test Platform: Language Specifications

1.2.2.3 HexaString Type

In the API, the definition of a hexastring type is done through the HexaString class.

class HexaString(value, nbBytes)
This class defines a HexaString type.

The HexaString type describes a sequence of bytes of arbitrary sizes with the hexastring
notation (e.g. b'aabbcc' instead of the raw notation b'\xaa\xbb\xcc').

The HexaString constructor expects some parameters:

Parameters

• value (bitarray or bytes, optional) – The current value of the type
instance.

• nbBytes (an int or a tuple with the min and the max size specified as
int, optional) – The size in bytes that this value can take.

Note: value and nbBytes attributes are mutually exclusive. Setting both values raises
an Exception.

The HexaString class provides the following public variables:

Variables

• typeName (str) – The name of the implemented data type.

• value (bitarray) – The current value of the instance. This value is
represented under the bitarray format.

• size (a tuple (int, int) or int) – The size in bits of the expected
data type defined by a tuple (min, max). Instead of a tuple, an integer
can be used to represent both min and max value.

The following example shows how to define a hexastring object with a constant value, and
the use of the generation method to produce a value:

>>> from netzob.all import *
>>> h = HexaString(b"aabbcc")
>>> h.generate().tobytes()
b'\xaa\xbb\xcc'

The following example shows how to define a hexastring object with a variable value, and
the use of the generation method to produce a value:

>>> from netzob.all import *
>>> h = HexaString(nbBytes=6)
>>> len(h.generate().tobytes())
6

Ref : Netzob API ©2017 AMOSSYS Page 13

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Test Platform: Language Specifications

1.2.2.4 String Type

This chapter covers the following requirements: 26.

In the API, the definition of an ASCII or Unicode type is done through the String class.

class String(value, nbChars, encoding, eos)
This class defines a String type, which is used to represent String or Unicode characters.

The type String is a wrapper for the Python str object with the capability to express more
constraints on the permitted string values.

The String constructor expects some parameters:

Parameters

• value (bitarray or str, optional) – The current value of the type
instance.

• nbChars (an int or a tuple with the min and the max size specified as
int, optional) – The amount of permitted String characters.

• encoding (str, optional) – The encoding of the string, such as ‘ascii’
or ‘utf-8’. Default value is ‘utf-8’.

• eos (a list of AbstractType or a list of Field, optional) – A
list defining the potential terminal characters for the string, with either
specific constants or pointers to other fields containing the permitted ter-
minal values. Default value is an empty list, meaning there is no terminal
character.

Note: value and nbChars attributes are mutually exclusive. Setting both values raises
an Exception.

The String class provides the following public variables:

Variables

• typeName (str) – The name of the implemented data type.

• value (bitarray) – The current value of the instance. This value is
represented under the bitarray format.

• size (a tuple (int, int) or int) – The size in bits of the expected
data type defined by a tuple (min, max). Instead of a tuple, an integer
can be used to represent both min and max value.

• encoding (str) – The encoding of the current value, such as ‘ascii’
or ‘utf-8’.

Ref : Netzob API ©2017 AMOSSYS Page 14

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Test Platform: Language Specifications

• eos – A list defining the potential terminal characters for the string,
with either specific constants or pointers to other fields containing the
permitted terminal values.

Supported encodings are available on the Python reference documentation: Python Standard
Encodings

Strings can be either static, dynamic with fixed sizes or even dynamic with variable sizes.

The following examples show how to define a static string in UTF-8:

>>> from netzob.all import *
>>> s = String("Paris")
>>> s.generate().tobytes()
b'Paris'
>>> s = String("Paris in Euro: C")
>>> s.generate().tobytes()
b'Paris in Euro: \xe2\x82\xac'
>>> s = String("Paris in Euro: C", encoding='utf-8')
>>> s.generate().tobytes()
b'Paris in Euro: \xe2\x82\xac'

The following example shows the raising of an exception if input value is not valid, with the
definition of a string where the associated value contains a non-String element:

>>> from netzob.all import *
>>> s = String("Paris in C", encoding='ascii')
Traceback (most recent call last):
...
ValueError: Input value for the following string is incorrect: 'Paris in C'...

The following example shows how to define a string with a fixed size and a dynamic content:

>>> from netzob.all import *
>>> s = String(nbChars=10)
>>> len(s.generate().tobytes())
10

The following example shows how to define a string with a variable size and a dynamic
content:

>>> from netzob.all import *
>>> s = String(nbChars=(10, 32))
>>> 10 <= len(s.generate().tobytes()) <= 32
True

String with terminal character

Strings with a terminal delimiter are supported. The following example shows the usage of
a delimiter that can either be a constant or a Field object (see Field for more information).

>>> from netzob.all import *
>>> f_eos = Field(String('\t'))
>>> s = String(eos=[String('\n'), Raw(b'\x00'), f_eos])

The eos attribute specifies a list of values that is used as potential terminal characters.
Terminal characters can either be a constant (such as String('\n') and Raw('\x00')

Ref : Netzob API ©2017 AMOSSYS Page 15

https://docs.python.org/3.4/library/codecs.html#standard-encodings
https://docs.python.org/3.4/library/codecs.html#standard-encodings

Test Platform: Language Specifications

in the previous example) or a targeted Field (such as f_eos in the previous example) from
which the terminal character is used.

1.2.2.5 BitArray Type

This chapter covers the following requirements: 27, 28, 29.

In the API, the definition of a bitfield type is done through the BitArray class.

class BitArray(value, nbBits)
This class defines a BitArray type.

The BitArray type describes an object that contains a sequence of bits of arbitrary sizes.

The BitArray constructor expects some parameters:

Parameters

• value (bitarray, optional) – The current value of the type instance.

• nbBits (an int or a tuple with the min and the max size specified as
int, optional) – The size in bits that this value can take.

Note: value and nbBits attributes are mutually exclusive. Setting both values raises an
Exception.

The BitArray class provides the following public variables:

Variables

• typeName (str) – The name of the implemented data type.

• value (bitarray) – The current value of the instance. This value is
represented under the bitarray format.

• size (a tuple (int, int) or int) – The size in bits of the expected
data type defined by a tuple (min, max). Instead of a tuple, an integer
can be used to represent both min and max value.

• constants (a list of str) – A list of named constant used to access
the bitarray internal elements.

The following example show how to define a BitArray containing a fixed constant.

>>> from netzob.all import *
>>> b = BitArray('00001111')
>>> b.generate().tobytes()
b'\x0f'

Bitarray of fixed and dynamic sizes

Ref : Netzob API ©2017 AMOSSYS Page 16

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Test Platform: Language Specifications

The following example shows how to define a bitarray of 1 bit, 47 bits, 64 bits and then a
bitarray whith a variable size between 13 and 128 bits:

>>> from netzob.all import *
>>> b = BitArray(nbBits=1)
>>> len(b.generate())
1

>>> from netzob.all import *
>>> b = BitArray(nbBits=47)
>>> len(b.generate())
47

>>> from netzob.all import *
>>> b = BitArray(nbBits=64)
>>> len(b.generate())
64

>>> from netzob.all import *
>>> b = BitArray(nbBits=(13, 128))
>>> 13 <= len(b.generate()) <= 128
True

Accessing bitarray elements by named constant

In the following example, we define a bitarray with two elements. As this bitarray has a
fixed length, element are automatically accessible by predefined named constants (‘item_0’
and ‘item_1’):

>>> from netzob.all import *
>>> b = BitArray('00')
>>> b.constants
['item_0', 'item_1']

Bitarray element names can be changed:

>>> from netzob.all import *
>>> b.constants[0] = 'Urgent flag'
>>> b.constants[1] = 'Data flag'
>>> b.constants
['Urgent flag', 'Data flag']

Bitarray element can be accessed in read or write mode:

>>> from netzob.all import *
>>> b['Urgent flag']
False
>>> b['Urgent flag'] = True
>>> b['Urgent flag']
True

Bitarray element can be used with binary operators:

>>> from netzob.all import *
>>> b['Urgent flag'] |= b['Data flag']
>>> b['Urgent flag']
True

Ref : Netzob API ©2017 AMOSSYS Page 17

Test Platform: Language Specifications

1.2.2.6 IPv4 Type

In the API, the definition of an IPv4 type is done through the IPv4 class.

class IPv4(value, network, endianness)
This class defines an IPv4 type.

The IPv4 type encodes a bytes object in an IPv4 representation, and conversely to decode
an IPv4 into a raw object.

The IPv4 constructor expects some parameters:

Parameters

• value (str or netaddr.IPAddress, optional) – An IP value ex-
pressed in standard dot notation (ex: “192.168.0.10”).

• network (str or netaddr.IPNetwork, optional) – A network ad-
dress expressed in standard dot notation (ex: “192.168.0.0/24”).

• endianness (Endianness, optional) – The endianness of the cur-
rent value. Values must be Endianness.BIG or Endianness.LITTLE. The
default value is Endianness.BIG.

Note: value and network attributes are mutually exclusive.

The IPv4 class provides the following public variables:

Variables

• typeName (str) – The name of the implemented data type.

• value (bitarray) – The current value of the instance. This value is
represented under the bitarray format.

• size (a tuple (int, int) or int) – The size in bits of the expected
data type defined by a tuple (min, max). Instead of a tuple, an integer
can be used to represent both min and max value.

• network (str or netaddr.IPNetwork) – A constraint over the
network the parsed data belongs to this network or not.

The following examples show the use of an IPv4 type:

>>> from netzob.all import *
>>> ip = IPv4("192.168.0.10")
>>> ip.size
(None, None)
>>> ip.value
bitarray('11000000101010000000000000001010')

Ref : Netzob API ©2017 AMOSSYS Page 18

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Test Platform: Language Specifications

It is also possible to specify an IPv4 type that accepts a range of IP addresses, through the
network= parameter, as shown on the following example:

>>> from netzob.all import *
>>> ip = IPv4(network="10.10.10.0/24")
>>> len(ip.generate().tobytes())
4

1.2.2.7 Timestamp Type

In the API, the definition of a timestamp type is done through the Timestamp class.

class Timestamp(value=None, epoch=<Epoch.UNIX: datetime.datetime(1970, 1, 1,
0, 0)>, unity=<Unity.SECOND: 1>, unitSize=UnitSize.SIZE_32,
endianness=Endianness.BIG, sign=Sign.UNSIGNED)

This class defines a Timestamp type.

The Timestamp type defines dates in a specific format (such as Windows, Unix or MacOSX
formats).

The Timestamp constructor expects some parameters:

Parameters

• value (bitarray or int, optional) – The raw value of the timestamp
(in seconds by default). If None, the default generated value is the current
time in UTC.

• epoch (Epoch <netzob.Model.Vocabulary.Types.
Timestamp.Epoch, optional) – The initial date expressed in UTC
from which timestamp is measured. Default value is EPOCH_UNIX.

• unity (Unity <netzob.Model.Vocabulary.Types.
Timestamp.Unity, optional) – This specifies the unity of the
timestamp (seconds, milliseconds, nanoseconds). The default value is
UNITY_SECOND.

• unitSize (UnitSize, optional) – The unitsize of the current value.
Values must be one of UnitSize.SIZE_* (see below for supported unit
sizes). The default value is UnitSize.SIZE_32.

Note: value and unitSize attributes are mutually exclusive. Setting both values raises
an Exception.

The Timestamp class provides the following public variables:

Variables

• typeName (str) – The name of the implemented data type.

Ref : Netzob API ©2017 AMOSSYS Page 19

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str

Test Platform: Language Specifications

• value (bitarray) – The current value of the instance. This value is
represented under the bitarray format.

• size (a tuple (int, int) or int) – The size in bits of the expected
data type defined by a tuple (min, max). Instead of a tuple, an integer
can be used to represent both min and max value.

• unitSize (UnitSize, optional) – The unitsize of the current value.
Values must be one of UnitSize.SIZE_* (see below for supported unit
sizes).

• epoch (Epoch <netzob.Model.Vocabulary.Types.
Timestamp.Epoch) – The initial date expressed in UTC from
which timestamp is measured.

• unity (Unity <netzob.Model.Vocabulary.Types.
Timestamp.Unity) – This specifies the unity of the timestamp
(seconds, milliseconds, nanoseconds).

Available values for epoch parameter are:

• Epoch.WINDOWS = datetime(1601, 1, 1)

• Epoch.MUMPS = datetime(1840, 12, 31)

• Epoch.VMS = datetime(1858, 11, 17)

• Epoch.EXCEL = datetime(1899, 12, 31)

• Epoch.NTP = datetime(1900, 1, 1)

• Epoch.MACOS_9 = datetime(1904, 1, 1)

• Epoch.PICKOS = datetime(1967, 12, 31)

• Epoch.UNIX = datetime(1970, 1, 1)

• Epoch.FAT = datetime(1980, 1, 1)

• Epoch.GPS = datetime(1980, 1, 6)

• Epoch.ZIGBEE = datetime(2000, 1, 1)

• Epoch.COCOA = datetime(2001, 1, 1)

Available values for unity parameter are:

• Unity.SECOND = 1

• Unity.DECISECOND = 10

• Unity.CENTISECOND = 100

• Unity.MILLISECOND = 1000

• Unity.MICROSECOND = 1000000

Ref : Netzob API ©2017 AMOSSYS Page 20

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Test Platform: Language Specifications

• Unity.NANOSECOND = 10000000000

In the following example, a Timestamp data is created with a specific value ‘1444492442’
and represented as 32 bits:

>>> from netzob.all import *
>>> time = Timestamp(1444492442)
>>> time.size
(None, None)
>>> time.value
bitarray('01010110000110010011010010011010')
>>> time.sign
Sign.UNSIGNED
>>> time.endianness
Endianness.BIG

Ref : Netzob API ©2017 AMOSSYS Page 21

Test Platform: Language Specifications

1.3 Modeling Data Variables

In the API, data variable modeling is done through the class Data.

class Data(dataType, originalValue=None, name=None, svas=None)
The Data class is a variable which embeds specific content.

A Data object stores at least two things: 1) the definition domain and the constraints over it,
through a Type object, and 2) the current value of the variable.

The Data constructor expects some parameters:

Parameters

• dataType (AbstractType, required) – The type of the data (for ex-
ample Integer, Raw, String, . . .).

• originalValue (bitarray, optional) – The original value of the
data (can be None, which is the default behavior).

• name (str, optional) – The name of the data (if None, the name will be
generated).

• svas (SVAS, optional) – The SVAS strategy defining how the Data
value is used during abstraction and specialization process. The default
strategy is SVAS.EPHEMERAL.

The Data class provides the following public variables:

Variables

• currentValue (bitarray) – The current value of the data.

• dataType (AbstractType) – The type of the data.

The following example shows the definition of the Data pseudo with a type String and a
default value “hello”. This means that this Data object accepts any string, and the current
value of this object is “hello”.

>>> from netzob.all import *
>>> s = String('hello').value
>>> data = Data(dataType=String(), originalValue=s, name="pseudo")
>>> data.varType
'Data'
>>> data.currentValue.tobytes()
b'hello'
>>> print(data.dataType)
String=None ((None, None))
>>> data.name
'pseudo'

currentValue
Property (getter/setter). The current value of the data.

Type bitarray

Ref : Netzob API ©2017 AMOSSYS Page 22

https://docs.python.org/3/library/stdtypes.html#str

Test Platform: Language Specifications

dataType
Property (getter/setter). The type of the data.

Type AbstractType

Ref : Netzob API ©2017 AMOSSYS Page 23

Test Platform: Language Specifications

1.4 Modeling Fields

In the API, field modeling is done through the class Field.

class Field(domain=None, name=’Field’, isPseudoField=False)
The Field class is used in the definition of a Symbol structure.

A Field describes a chunk of a Symbol and is specified by a definition domain, representing
the set of values the field accepts.

The Field constructor expects some parameters:

Parameters

• domain (a list of Variable or a list of Field, optional) – The
definition domain of the field (i.e. the set of values the field accepts). If
not specified, the default definition domain will be Raw(), meaning it
accepts any values.

• name (str, optional) – The name of the field. If not specified, the
default name will be “Field”.

• isPseudoField (bool, optional) – A flag indicating if the field is a
pseudo field, meaning it is used internally to help for the computation of
the value of another field, but does not directly produce data.

The Field class provides the following public variables:

Variables

• name (str) – The name of the field.

• description (str) – The description of the field.

• domain (a list of object) – The definition domain of the field (i.e.
the set of values the field accepts).

• fields (a list of Field) – The sorted list of sub-fields. This vari-
able should be used only if sub-field domains have basic types (for ex-
ample Integer or Raw). More generally, preferably use Agg.

• parent (Field or Symbol) – The parent element.

• isPseudoField (bool) – A flag indicating if the field is a pseudo
field, meaning it is used internally to help for the computation of the
value of another field, but does not directly produce data.

Fields hierarchy

A field can be composed of sub-fields. This is useful for example to separate a header,
composed of multiple fields, from its payload. The parent field can be seen as a facility to
access to a group of fields.

Ref : Netzob API ©2017 AMOSSYS Page 24

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

Test Platform: Language Specifications

In the following example, the fheader field is a parent field for a group of sub-fields. The
parent field does not contain any concrete data, in contrary to its sub-fields.

>>> from netzob.all import *
>>> fh0 = Field(name='fh0')
>>> fh1 = Field(name='fh1')
>>> fheader = Field([fh0, fh1], name='fheader')
>>> print(fheader.str_structure())
fheader
|-- fh0

|-- Data (Raw=None ((0, 524288)))
|-- fh1

|-- Data (Raw=None ((0, 524288)))

More generally, a field is part of a tree whose root is a symbol and whose all other nodes of
the tree are fields. Hence, a field always has a parent which can be another field or a symbol
if it is the root.

Field definition domain

The value that can take a field is defined by its definition domain. The definition domain
of a field can take multiple forms, in order to easily express basic types (such as Integer or
String) or to model complex data structures (such has alternatives, repetitions or sequences).

The following examples present the different forms that permit to express the same field
content (i.e. an Integer with a constant value of 10):

>>> from netzob.all import *
>>> f = Field(Data(Integer(10)))
>>> f = Field(Integer(10))
>>> f = Field(10)

If these fields are equivalent, this is because the first parameter of the Field constructor
is domain=, thus its name can be omitted. Besides, the domain parameter will be parsed
by a factory, which accepts either the canonical form of a definition domain (such as do-
main=Data(Integer(10))) or a shortened form (such as domain=Integer(10), or even do-
main=10).

Relationships between fields

A field can have its value related to the content of another field. Such relationships may be
specified through specific domain objects, such as Size or Value classes.

The following example describes a size relationship with a String field:

>>> from netzob.all import *
>>> f0 = Field(String("test"))
>>> f1 = Field(Size(f0))
>>> fheader = Field([f0, f1])
>>> fheader.specialize()
b'test\x04'

Pseudo fields

Sometimes, a specific field can be needed to express a complex data structure that depends
on external data. This is the purpose of the isPseudoField flag. This flag indicates that the

Ref : Netzob API ©2017 AMOSSYS Page 25

Test Platform: Language Specifications

current field is only used for the computation of the value of another field, but does not
produce real content during specialization. The following example shows a pseudo field that
contains an external data, and a real field whose content is the size of the external data:

>>> from netzob.all import *
>>> f_pseudo = Field(domain="An external data", isPseudoField=True)
>>> f_real = Field(domain=Size(f_pseudo))
>>> fheader = Field([f_pseudo, f_real])
>>> fheader.specialize()
b'\x10'

A real example of a pseudo field is found in the UDP checksum, which relies on a pseudo IP
header for its computation.

getField(field_name)
Retrieve a sub-field based on its name.

Parameters field_name (str, required) – the name of the Field object

Returns The sub-field object.

Return type Field

The following example shows how to retrieve a sub-field based on its name:

>>> from netzob.all import *
>>> f1 = Field("hello", name="f1")
>>> f2 = Field("hello", name="f3")
>>> f3 = Field("hello", name="f2")
>>> fheader = Field("hello", name="fheader")
>>> fheader.fields = [f1, f2, f3]
>>> fheader.getField('f2')
f2
>>> type(fheader.getField('f2'))
<class 'netzob.Model.Vocabulary.Field.Field'>

getSymbol()
Return the symbol to which this field is attached.

Returns The associated symbol if available.

Return type Symbol

Raises NoSymbolException

To retrieve the associated symbol, this method recursively call the parent of the current
object until the root is found.

If the root is not a Symbol, this raises an Exception.

The following example shows how to retrieve the parent symbol from a field object:

>>> from netzob.all import *
>>> field = Field("hello", name="F0")
>>> symbol = Symbol([field], name="S0")
>>> field.getSymbol()
S0
>>> type(field.getSymbol())
<class 'netzob.Model.Vocabulary.Symbol.Symbol'>

Ref : Netzob API ©2017 AMOSSYS Page 26

https://docs.python.org/3/library/stdtypes.html#str

Test Platform: Language Specifications

str_structure(deepness=0)
Returns a string which denotes the current symbol/field definition using a tree display.

Parameters deepness (int, required) – Parameter used to specify the
number of indentations.

Returns The current symbol/field represented as a string.

Return type str

>>> from netzob.all import *
>>> f1 = Field(String(), name="field1")
>>> f2 = Field(Integer(interval=(10, 100)), name="field2")
>>> f3 = Field(Raw(nbBytes=14), name="field3")
>>> symbol = Symbol([f1, f2, f3], name="symbol_name")
>>> print(symbol.str_structure())
symbol_name
|-- field1

|-- Data (String=None ((None, None)))
|-- field2

|-- Data (Integer=None ((10, 100)))
|-- field3

|-- Data (Raw=None ((112, 112)))
>>> print(f1.str_structure())
field1
|-- Data (String=None ((None, None)))

specialize()
The method specialize() generates a bytes sequence whose content follows the
symbol definition.

Returns The produced content after specializing the symbol.

Return type bytes

Raises GenerationException if an error occurs while specializing the
field.

The following example shows the specialize() method used for a field which
contains a string with a constant value.

>>> from netzob.all import *
>>> f = Field(String("hello"))
>>> f.specialize()
b'hello'

The following example shows the specialize() method used for a field which
contains a string with a variable value.

>>> from netzob.all import *
>>> f = Field(String(nbChars=4))
>>> len(f.specialize())
4

Ref : Netzob API ©2017 AMOSSYS Page 27

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

Test Platform: Language Specifications

1.5 Modeling Fields with Complex Structures

Multiple variables can be combined to form a complex and precise specification of the values that
are accepted by a field. Two complex variable types are provided:

• Aggregate node variables, which can be used to model a concatenation of variables.

• Alternate node variables, which can be used to model an alternative of multiple variables.

• Repeat node variables, which can be used to model a repetition of a variable.

Those node variables are described in details in this chapter.

1.5.1 Aggregate Domain

This chapter covers the following requirements: 35, 36, 37.

In the API, the definition of an concatenation of variables is done through the Agg class.

class Agg(children=None, last_optional=False, svas=None)
The Agg class is a node variable that represents a concatenation of variables.

An aggregate node concatenates the values that are accepted by its children nodes. It can be
used to specify a succession of tokens.

The Agg constructor expects some parameters:

Parameters

• children (a list of Variable, optional) – The sequence of vari-
able elements contained in the aggregate.

• last_optional (bool, optional) – A flag indicating if the last ele-
ment of the children is optional or not.

• svas (SVAS, optional) – The SVAS strategy defining how the Aggre-
gate behaves during abstraction and specialization. The default strategy
is SVAS.EPHEMERAL.

The Agg class supports modeling of direct recursions on the right. To do so, the flag SELF is
available, and should only be used in the last position of the aggregate (see example below).

Aggregate examples

For example, the following code represents a field that accepts values that are made of a
String of 3 to 20 random characters followed by a “.txt” extension:

>>> from netzob.all import *
>>> t1 = String(nbChars=(3,20))
>>> t2 = String(".txt")
>>> f = Field(Agg([t1, t2]))

Ref : Netzob API ©2017 AMOSSYS Page 28

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

Test Platform: Language Specifications

The following example shows an aggregate between BitArray variables:

>>> from netzob.all import *
>>> f = Field(Agg([BitArray('01101001'), BitArray(nbBits=3), BitArray(nbBits=5)]))
>>> t = f.specialize()
>>> len(t)
2

Examples of Agg internal attribute access

>>> from netzob.all import *
>>> domain = Agg([Raw(), String()])
>>> domain.varType
'Agg'
>>> print(domain.children[0].dataType)
Raw=None ((0, 524288))
>>> print(domain.children[1].dataType)
String=None ((None, None))
>>> domain.children.append(Agg([10, 20, 30]))
>>> len(domain.children)
3
>>> domain.children.remove(domain.children[0])
>>> len(domain.children)
2

Abstraction of aggregate variables

This example shows the abstraction process of an Aggregate variable:

>>> from netzob.all import *
>>> v1 = String(nbChars=(1, 10))
>>> v2 = String(".txt")
>>> f0 = Field(Agg([v1, v2]), name="f0")
>>> f1 = Field(String("!"), name="f1")
>>> f = Field([f0, f1])
>>> data = "john.txt!"
>>> Field.abstract(data, [f])
(Field, OrderedDict([('f0', b'john.txt'), ('f1', b'!')]))

In the following example, an Aggregate variable is defined. A message that does not corre-
spond to the expected model is then parsed, thus the returned field is unknown:

>>> from netzob.all import *
>>> v1 = String(nbChars=(1, 10))
>>> v2 = String(".txt")
>>> f0 = Field(Agg([v1, v2]), name="f0")
>>> f1 = Field(String("!"), name="f1")
>>> f = Field([f0, f1])
>>> data = "johntxt!"
>>> Field.abstract(data, [f])
(Unknown message 'johntxt!', OrderedDict())

Specialization of aggregate variables

This example shows the specialization process of an Aggregate variable:

>>> from netzob.all import *
>>> d1 = String("hello")
>>> d2 = String(" john")
>>> f = Field(Agg([d1, d2]))
>>> f.specialize()
b'hello john'

Ref : Netzob API ©2017 AMOSSYS Page 29

Test Platform: Language Specifications

Optional last variable

This example shows the specialization and parsing of an aggregate with an optional last
variable*:

>>> from netzob.all import *
>>> a = Agg([int8(2), int8(3)], last_optional=True)
>>> f = Field(a)
>>> res = f.specialize()
>>> res == b'\x02' or res == b'\x02\x03'
True
>>> d = b'\x02\x03'
>>> Field.abstract(d, [f])
(Field, OrderedDict([('Field', b'\x02\x03')]))
>>> d = b'\x02'
>>> Field.abstract(d, [f])
(Field, OrderedDict([('Field', b'\x02')]))

Modeling indirect imbrication

The following example shows how to specify a field with a structure (v2) that can contain
another structure (v0), through a tierce structure (v1). The flag last_optional is used
to indicate that the specialization or parsing of the last element of the aggregates v1 and v2
is optional.

>>> from netzob.all import *
>>> v0 = Agg(["?", int8(4)])
>>> v1 = Agg(["!", int8(3), v0], last_optional=True)
>>> v2 = Agg([int8(2), v1], last_optional=True)
>>> f = Field(v2)
>>>
>>> # Test specialization
>>> res = f.specialize()
>>> res == b'\x02' or res == b'\x02!\x03' or res == b'\x02!\x03?\x04'
True
>>>
>>> # Test parsing
>>> (res_object, res_data) = Field.abstract(res, [f])
>>> res_object == f
True

Warning: Important note about recursion

The library can handle both direct and indirect recursion. However, there is a limitation
requiring to use a recursing variable on the right side of a statement. Any other behavior
could lead to infinite recursion during the loading of the model. To help understanding
what syntax should be preferred, here is a list of annotated BNF syntaxes.

invalid syntaxes:

A ::= (* recursion on the left side *)
[A], integer

Ref : Netzob API ©2017 AMOSSYS Page 30

Test Platform: Language Specifications

B ::= "(", B | ".", ")"
(* recursion on the middle *)

valid adaptations from above examples:

A ::= (* recursion is replaced by a repeat approach *)
integer, [integer]*

B ::= (* split the statement ... *)
B', ")"

B' ::= (* to transform a direct recursion into an
indirect recursion on the right side *)
"(", B | "."

valid recursion examples:

C ::= (* a string with one or more dot characters *)
".", C*

D ::= (* a string with zero or more dot characters *)
[D | "."]*

Modeling direct recursion, simple example

The following example shows how to specify a field with a structure (v) that can optionally
contain itself. To model such recursive structure, the SELF flag has to be used in the last
position of the aggregate.

>>> from netzob.all import *
>>> v = Agg([int8(interval=(1, 5)), SELF], last_optional=True)
>>> f = Field(v)
>>>
>>> # Test specialization
>>> res = f.specialize()
>>> res
b'\x02\x04\x01'
>>>
>>> # Test parsing
>>> (res_object, res_data) = Field.abstract(res, [f])
>>> res_object == f
True

Modeling direct recursion, more complex example

This example introduces a recursion in the middle of an expression by modelling a pair
group of parentheses ('(' and ')'), around a single character ('+'). The BNF syntax of
this model would be:

Ref : Netzob API ©2017 AMOSSYS Page 31

Test Platform: Language Specifications

parentheses ::= "(", parentheses | "+" , ")"

This syntax introduces a recursivity in the middle of the left statement, which is not sup-
ported. Instead, this syntax could be adapted to move the recursivity to the right.

parentheses ::= left, right
left ::= "(", parentheses | "+"
right ::= ")"

The following models describe this issue and provide a workaround.

BAD way

>>> from netzob.all import *
>>> parentheses = Agg(["(", Alt([SELF, "+"]), ")"])
Traceback (most recent call last):
ValueError: SELF can only be set at the last position of an Agg

GOOD way

>>> from netzob.all import *
>>> parentheses = Agg([])
>>> left = Agg(["(", Alt([parentheses, "+"])])
>>> right = ")"
>>> parentheses.children += [left, right]
>>>
>>> symbol = Symbol([Field(parentheses)])
>>> symbol.specialize()
b'(((+)))'

Modeling indirect recursion, simple example

The following example shows how to specify a field with a structure (v2) that con-
tains another structure (v1), which can itself contains the first structure (v2). The flag
last_optional is used to indicate that the specialization or parsing of the last element
of the aggregate v2 is optional.

>>> from netzob.all import *
>>> v1 = Agg([])
>>> v2 = Agg([int8(interval=(1, 3)), v1], last_optional=True)
>>> v1.children = ["!", v2]
>>> f = Field(v2)
>>> res = f.specialize()
>>> res
b'\x03!\x03!\x03!\x03'
>>>
>>> # Test parsing
>>> (res_object, res_data) = Field.abstract(res, [f])
>>> res_object == f
True

Modeling indirect recursion, more complex example

The following syntax provides a way to parse and specialize a subset of mathematical ex-

Ref : Netzob API ©2017 AMOSSYS Page 32

Test Platform: Language Specifications

pressions including pair group of parentheses, digits from 0 to 9 and two arithmetic operators
(‘+’ and ‘*’).

num ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9
operator ::= "+" | "*"
operation ::= left, right
left ::= subop, ")"
subop ::= "(", operation

The following examples should be compatible with these expressions:

1 + 2
1 + 2 + 3
1 + (2 + 3)
(1 + 2) + 3
(1 + 2) + 3 + 4
1 + (2 * 3) + (4 * 5)
1 + (2 * (3 + 4)) + 5
1 + ((2 * 3) * 4) * 5

These last expressions should not be compatible with these expressions:

1
1 ** 2
1 * (2 * 3
1 *

This example of indirect recursion introduces a recursion of the operation statement, called
in the subop statement.

>>> from netzob.all import *
>>> num = Alt("0123456789")
>>> operator = Alt([" + ", " * "])
>>> operation = Agg([], last_optional=True)
>>> subop1 = Agg(["(", operation])
>>> subop2 = Agg([subop1, ")"])
>>> left = Alt([num, subop2])
>>> right = Agg([operator, operation])
>>> operation.children += [left, right]
>>> sym = Symbol([Field(operation)])
>>> sym.specialize()
b'((((4 * 8 * 4) + 5 + 9 + 0) * 7 * 0 + (4 + 9 + (3 * 4 + 2) * 0) * 9) + 4 * 7)'

1.5.2 Alternate Domain

This chapter covers the following requirements: 32.

In the API, the definition of an alternate of variables is done through the Alt class.

class Alt(children=None, svas=None)
The Alt class is a node variable that represents an alternative of variables.

Ref : Netzob API ©2017 AMOSSYS Page 33

Test Platform: Language Specifications

A definition domain can take the form of a combination of permitted values/types/domains.
This combination is represented by an alternate node. It can be seen as an OR operator
between two or more children nodes.

The Alt constructor expects some parameters:

Parameters

• children (a list of Variable, optional) – The set of variable ele-
ments permitted in the alternative.

• svas (SVAS, optional) – The SVAS strategy defining how the Alternate
behaves during abstraction and specialization. The default strategy is
SVAS.EPHEMERAL.

For example, the following code denotes an alternate object that accepts either the string
“filename1.txt” or the string “filename2.txt”:

>>> from netzob.all import *
>>> t1 = String("filename1.txt")
>>> t2 = String("filename2.txt")
>>> domain = Alt([t1, t2])

Examples of Alt internal attribute access

>>> from netzob.all import *
>>> domain = Alt([Raw(), String()])
>>> domain.varType
'Alt'
>>> print(domain.children[0].dataType)
Raw=None ((0, 524288))
>>> print(domain.children[1].dataType)
String=None ((None, None))

1.5.3 Repeat Domain

This chapter covers the following requirements: 33, 34.

In the API, the definition of a repetition of variables, or sequence, is done through the Repeat class.

class Repeat(child, nbRepeat, delimiter=None, svas=None)
The Repeat class is a node variable that represents a sequence of the same variable. This
denotes an n-time repetition of a variable, which can be a terminal leaf or a non-terminal
node.

The Repeat constructor expects some parameters:

Parameters

• child (Variable, required) – The variable element that will be re-
peated.

Ref : Netzob API ©2017 AMOSSYS Page 34

https://docs.python.org/3/library/stdtypes.html#list

Test Platform: Language Specifications

• nbRepeat (an int or a tuple of int or a Python variable contain-
ing an int or a Field or a func method, optional) – The number of
repetitions of the element. This value can be a fixed integer, a tuple of
integers defining the minimum and maximum of permitted repetitions, a
constant from the calling script, a value present in another field, or can
be identified by calling a callback function. In the latter case, the call-
back function should return a boolean telling if the expected number of
repetitions is reached. Those use cases are described below.

• delimiter (bitarray, optional) – The delimiter used to separate
the repeated element.

• svas (SVAS, optional) – The SVAS strategy defining how the Alternate
behaves during abstraction and specialization. The default strategy is
SVAS.EPHEMERAL.

Callback prototype

The callback function that can be used in the nbRepeat parameter has the following pro-
totype:

def cbk_nbRepeat(nb_repeat, data, remaining=None,
parsed_structure=None, child=None)

Where:

• nb_repeat is an int that corresponds to the amount of time the child element has
been parsed or specialize.

• data is a bitarray that corresponds to the already parsed or specialized data.

• remaining is a bitarray that corresponds to the remaining data to be parsed.
Only set in parsing mode. In specialization mode, this parameter will have a None
value. This parameter can therefore be used to identify the current mode.

• parsed_structure is a data structure that allows access to the values of the parsed
Variable elements. Only set in parsing mode. In specialization mode, this parameter
will have a None value.

• child is a Variable that corresponds to the repeated element. Only set in parsing
mode. In specialization mode, this parameter will have a None value.

The child parameter allows access to the root of a tree structure. The child Variable
can have children. Access to Variable values is done through the parsed_structure,
thanks to its methods hasData and getData:

• parsed_structure.hasData(child) will return a bool telling if a data has
been parsed for the child Variable.

• parsed_structure.getData(child) will return a bitarray that corre-
sponds to the value parsed by the child Variable.

Ref : Netzob API ©2017 AMOSSYS Page 35

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Test Platform: Language Specifications

The callback function is called each time the child element is seen.

The callback function should return a boolean telling if the expected number of repetitions
is reached (True) or not (False).

Basic usage of Repeat

The following example shows a repeat variable where the repeated element is a String:

>>> from netzob.all import *
>>> f1 = Field(Repeat(String("A"), nbRepeat=16))
>>> f1.specialize()
b'AAAAAAAAAAAAAAAA'

Usage of a delimiter in Repeat

We can specify a delimiter between each repeated element, as depicted in the following
example:

>>> from netzob.all import *
>>> delimiter = bitarray(endian='big')
>>> delimiter.frombytes(b"-")
>>> f = Field(Repeat(Alt([String("A"), String("B")]), nbRepeat=(2, 4),
... delimiter=delimiter), name='f1')
>>> 1 <= len(f.specialize()) <= 7
True

Limiting the number of repetitions with an integer

The following example shows how to create a Repeat variable whose number of repetitions
is limited by an integer:

>>> from netzob.all import *
>>> f1 = Field(Repeat(String("john"), nbRepeat=3))

Limiting the number of repetitions with an interval of integers

The following example shows how to create a Repeat variable whose number of repetitions
is limited by an interval of integers:

>>> from netzob.all import *
>>> f1 = Field(Repeat(String("john"), nbRepeat=(2,5)))

Limiting the number of repetitions with a Python integer variable

The following example shows how to create a Repeat variable whose number of repetitions
is limited by a Python integer variable. Such variable is typically managed by the calling
script:

>>> from netzob.all import *
>>> var = 3
>>> f1 = Field(Repeat(String("john"), nbRepeat=var))

Limiting the number of repetitions with the value of another field

Ref : Netzob API ©2017 AMOSSYS Page 36

Test Platform: Language Specifications

The following example shows how to create a Repeat variable whose number of repetitions
is limited by the value of another field:

>>> from netzob.all import *
>>> f_end = Field(Integer(interval=(2, 5)))
>>> f1 = Field(Repeat(String("john"), nbRepeat=f_end))

Limiting the number of repetitions by calling a callback function

The following example shows how to create a Repeat variable whose number of repetitions
is handled by calling a callback function which returns a boolean telling if the expected
number of repetitions is reached. Here, in parsing mode, the repeat stops when the byte b’B’
is encountered. In specialization mode, the repeat stops at the first iteration.

>>> from netzob.all import *
>>> def cbk(nb_repeat, data, remaining=None, parsed_structure=None, child=None):
... if remaining is not None: # This means we are in parsing mode
... print("in cbk: nb_repeat:{} -- data:{} -- remaining:{}".format(nb_repeat, data.
→˓tobytes(), remaining.tobytes()))

...

... # We check the value of the second child of the parameter child

... if child.isnode() and len(child.children) > 1:

... second_subchild = child.children[1]

... if parsed_structure.hasData(second_subchild) and parsed_structure.
→˓getData(second_subchild).tobytes() == b'B':

... return True

... return False

... return True
>>> f1 = Field(Repeat(Alt([String("A"), String("B")]), nbRepeat=cbk), name="f1")
>>> f2 = Field(String("B"), name="f2")
>>> f3 = Field(String("C"), name="f3")
>>> f = Field([f1, f2, f3])
>>> d = f.specialize()
>>> d == b'ABC' or d == b'BBC'
True
>>> data = "AABC"
>>> Field.abstract(data, [f])
in cbk: nb_repeat:1 -- data:b'A' -- remaining:b'ABC'
in cbk: nb_repeat:2 -- data:b'AA' -- remaining:b'BC'
in cbk: nb_repeat:3 -- data:b'AAB' -- remaining:b'C'
(Field, OrderedDict([('f1', b'AA'), ('f2', b'B'), ('f3', b'C')]))

Ref : Netzob API ©2017 AMOSSYS Page 37

Test Platform: Language Specifications

1.6 Modeling Field Relationships

The ZDL language enables the definition of constraints on variables, in order to handle relation-
ships. Those constraints are leveraged during abstraction and specialization of messages. The API
supports two kind of relationships:

• Intra-symbol relationships, which denote a relationship between the size or the value of a
variable, and another field in the same symbol.

• Inter-symbol relationships, which denote a relationship with a field of another symbol.

1.6.1 Value Relationships

This chapter covers the following requirements: 45.

In the API, the definition of a relationship with the value of another field is done through the Value
class. This class enables the computation of the relationship result by a basic copy of the targeted
field or by calling a callback function.

class Value(target, name=None, operation=None)
The Value class is a variable whose content is the value of another field.

It is possible to define a field so that its value is equal to the value of another field, on which
a transformation operation can be realized.

The Value constructor expects some parameters:

Parameters

• target (Field, required) – The targeted field of the relationship.

• name (str, optional) – The name of the variable. If None, the name
will be generated.

• operation (Callable, optional) – An optional transformation op-
eration to be applied on the targeted field value, through a callback.

The Value class provides the following public variables:

Variables operation (Callable) – Defines the operation to be performed
on the found value. This operation takes the form of a python function that
accepts a single parameter of BitArray type and returns a BitArray.

Callback prototype

A callback function can be used to specify a complex relationship. The callback function
that can be used in the operation parameter has the following prototype:

def cbk_operation(data):

Where:

Ref : Netzob API ©2017 AMOSSYS Page 38

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable

Test Platform: Language Specifications

• data is a bitarray that contains the value of the targeted field.

The callback function is expected to implement relationship operations based on the provided
data.

The callback function should return a bitarray.

Value examples

The following example shows how to define a field with a copy of another field value, in
specialization mode:

>>> from netzob.all import *
>>> f0 = Field(String("abcd"))
>>> f1 = Field(Value(f0))
>>> fheader = Field([f0, f1])
>>> fheader.specialize()
b'abcdabcd'

Value field with a variable as a target

The following example shows the specialization process of a Value field whose target is a
variable:

>>> from netzob.all import *
>>> d = Data(String("john"))
>>> f1 = Field(domain=d, name="f1")
>>> f2 = Field(String(";"), name="f2")
>>> f3 = Field(Value(d), name="f3")
>>> f4 = Field(String("!"), name="f4")
>>> f = Field([f1, f2, f3, f4])
>>> f.specialize()
b'john;john!'

Specialization of Value objects

The following examples show the specialization process of Value objects:

>>> from netzob.all import *
>>> f1 = Field(String("john"), name="f1")
>>> f2 = Field(String(";"), name="f2")
>>> f3 = Field(Value(f1), name="f3")
>>> f4 = Field(String("!"), name="f4")
>>> f = Field([f1, f2, f3, f4])
>>> f.specialize()
b'john;john!'

>>> from netzob.all import *
>>> f3 = Field(String("john"), name="f3")
>>> f2 = Field(String(";"), name="f2")
>>> f1 = Field(Value(f3), name="f1")
>>> f4 = Field(String("!"), name="f4")
>>> f = Field([f1, f2, f3, f4])
>>> f.specialize()
b'john;john!'

Transformation operation on targeted field value

A named callback function can be used to specify a more complex relationship. The fol-

Ref : Netzob API ©2017 AMOSSYS Page 39

Test Platform: Language Specifications

lowing example shows a relationship where the computed value corresponds to the reversed
bits of the targeted field value. The data parameter of the cbk function contains a bitarray
object of the targeted field value. The cbk function returns a bitarray object.

>>> from netzob.all import *
>>> def cbk(data):
... ret = data.copy()
... ret.reverse()
... return ret
>>> f0 = Field(Raw(b'\x01'))
>>> f1 = Field(Value(f0, operation = cbk))
>>> f = Field([f0, f1])
>>> f.specialize()
b'\x01\x80'

1.6.2 Size Relationships

This chapter covers the following requirements: 38.

class Size(targets, dataType=None, factor=0.125, offset=0, name=None)
The Size class is a variable whose content is the size of other field values.

It is possible to define a field so that its value is equal to the size of another field, or group of
fields (potentially including itself).

By default, the computed size expresses an amount of bytes. It is possible to change this
behavior by using the parameters factor and offset.

The Size constructor expects some parameters:

Parameters

• targets (a list of Field, required) – The targeted fields of the
relationship.

• dataType (AbstractType, optional) – Specify that the produced
value should be represented according to this dataType. If None, default
value is Raw(nbBytes=1).

• factor (float, optional) – Specify that the initial size value (always
expressed in bits) should be divided by this factor. The default value is
1.0/8. For example, to express a size in bytes, the factor should be
1.0/8, whereas to express a size in bits, the factor should be 1.0.

• offset (int, optional) – Specify that an offset value should be added
to the final size value (after applying the factor parameter). The default
value is 0.

• name (str, optional) – The name of the variable. If None, the name
will be generated.

The Size class provides the following public variables:

Ref : Netzob API ©2017 AMOSSYS Page 40

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Test Platform: Language Specifications

Variables

• dataType (AbstractType) – The type of the data.

• factor – Defines the multiplication factor to apply on the targeted
length.

• offset – Defines the offset to apply on the computed length.

The following example shows how to define a size field with a Raw dataType:

>>> from netzob.all import *
>>> f0 = Field(String(nbChars=10))
>>> f1 = Field(String(";"))
>>> f2 = Field(Size([f0], dataType=Raw(nbBytes=1)))
>>> f = Field([f0, f1, f2])
>>> data = f.specialize()
>>> data[-1] == 10
True

The following example shows how to define a size field with a Raw dataType, along with
specifying the factor and offset parameters.

>>> from netzob.all import *
>>> f0 = Field(String(nbChars=(4,10)))
>>> f1 = Field(String(";"))
>>> f2 = Field(Size([f0, f1], dataType=Raw(nbBytes=1), factor=1./8, offset=4))
>>> f = Field([f0, f1, f2])
>>> data = f.specialize()
>>> data[-1] > (4*8*1./8 + 4) # == 4 bytes minimum * 8 bits * a factor of 1./8 + an offset
→˓of 4

True

In this example, the field f2 is a size field where its value is equal to the size of the concate-
nated values of fields f0 and f1. The dataType parameter specifies that the produced value
should be represented as a Raw. The factor parameter specifies that the initial size value
(always expressed in bits) should be divided by 8 (in order to retrieve the amount of bytes).
The offset parameter specifies that the final size value should be computed by adding 4 bytes.

The following example shows how to define a size field so that its value depends on a list of
non-consecutive fields:

>>> from netzob.all import *
>>> f1 = Field(String("="))
>>> f2 = Field(String("#"))
>>> f4 = Field(String("%"))
>>> f5 = Field(Raw(b"_"))
>>> f3 = Field(Size([f1, f2, f4, f5]))
>>> f = Field([f1, f2, f3, f4, f5])
>>> f.specialize()
b'=#\x04%_'

In the following example, a size field is declared after its targeted field. This shows that the
field order does not impact the relationship computations.

>>> from netzob.all import *
>>> f0 = Field(String(nbChars=(1,4)), name='f0')
>>> f1 = Field(String(";"), name='f1')

Ref : Netzob API ©2017 AMOSSYS Page 41

Test Platform: Language Specifications

>>> f2 = Field(Size(f0), name='f2')
>>> f = Field([f0, f1, f2])
>>> 3 <= len(f.specialize()) <= 6
True

In the following example, a size field is declared before the targeted field:

>>> from netzob.all import *
>>> f2 = Field(String(nbChars=(1,4)), name="f2")
>>> f1 = Field(String(";"), name="f1",)
>>> f0 = Field(Size(f2), name="f0")
>>> f = Field([f0, f1, f2])
>>> 3 <= len(f.specialize()) <= 6
True

Size field with fields and variables as target

The following examples show the specialization process of a Size field whose targets are
both fields and variables:

>>> from netzob.all import *
>>> d = Data(String(nbChars=20))
>>> f0 = Field(domain=d)
>>> f1 = Field(String(";"))
>>> f2 = Field(Size([d, f1]))
>>> f = Field([f0, f1, f2])
>>> res = f.specialize()
>>> b'\x15' in res
True

>>> from netzob.all import *
>>> d = Data(String(nbChars=20))
>>> f2 = Field(domain=d)
>>> f1 = Field(String(";"))
>>> f0 = Field(Size([f1, d]))
>>> f = Field([f0, f1, f2])
>>> res = f.specialize()
>>> b'\x15' in res
True

dataType
Property (getter/setter). The datatype used to encode the result of the computed size.

Type AbstractType

factor
Property (getter/setter). Defines the multiplication factor to apply on the targeted length
(in bits).

Type float

offset
Property (getter/setter). Defines the offset to apply on the computed length. computed
size = (factor*size(targetField)+offset)

Type int

Ref : Netzob API ©2017 AMOSSYS Page 42

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Test Platform: Language Specifications

1.6.3 Padding Relationships

This chapter covers the following requirements: 30, 31.

In the API, it is possible to model a structure with a padding through the class Padding.

class Padding(targets, data, modulo, factor=1.0, offset=0, name=None)
The Padding class is a variable whose content permits to produce a padding value that can
be used to align a structure to a fixed size.

The Padding constructor expects some parameters:

Parameters

• targets (a list of Field, required) – The targeted fields of the
relationship.

• data (a AbstractType or a callable, required) – Specify that the
produced value should be represented according to this data. A callback
function, returning the padding value, can be used here.

• modulo (int, required) – Specify the expected modulo size. The
padding value will be computed so that the whole structure aligns to this
value. This typically corresponds to a block size in cryptography.

• factor (float, optional) – Specify that the length of the targeted
structure (always expressed in bits) should be divided by this factor. The
default value is 1.0. For example, to express a length in bytes, the factor
should be 1.0/8, whereas to express a length in bits, the factor should
be 1.0.

• offset (int, optional) – Specify a value in bits that should be added to
the length of the targeted structure (after applying the factor parameter).
The default value is 0.

• name (str, optional) – The name of the variable. If None, the name
will be generated.

Callback prototype

The callback function that can be used in the data parameter has the following prototype:

def cbk_data(current_length, modulo)

Where:

• current_length is an int that corresponds to the current size in bits of the tar-
geted structure.

• modulo is an int that corresponds to the expected modulo size in bits.

The callback function should return a bitarray.

Ref : Netzob API ©2017 AMOSSYS Page 43

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Test Platform: Language Specifications

Padding examples

The following code illustrates a padding with an integer modulo. Here, the padding data
b'\x00' is repeated n times, where n is computed by decrementing the modulo number,
128, by the current length of the targeted structure. The padding length is therefore equal to
128 - (10+2)*8 = 32 bits.

>>> from netzob.all import *
>>> f0 = Field(Raw(nbBytes=10))
>>> f1 = Field(Raw(b"##"))
>>> f2 = Field(Padding([f0, f1], data=Raw(b'\x00'), modulo=128))
>>> f = Field([f0, f1, f2])
>>> d = f.specialize()
>>> d[12:]
b'\x00\x00\x00\x00'
>>> len(d) * 8
128

The following code illustrates a padding with the use of the offset parameter, where the
targeted field sizes is decremented by 8 when computing the padding value length.

>>> from netzob.all import *
>>> f0 = Field(Raw(nbBytes=10))
>>> f1 = Field(Raw(b"##"))
>>> f2 = Field(Padding([f0, f1], data=Raw(b'\x00'), modulo=128, offset=8))
>>> f = Field([f0, f1, f2])
>>> d = f.specialize()
>>> d[12:]
b'\x00\x00\x00'
>>> len(d) * 8
120

The following code illustrates a padding with the use of the factor parameter, where the
targeted field sizes is divided by 2 before computing the padding value length.

>>> from netzob.all import *
>>> f0 = Field(Raw(nbBytes=10))
>>> f1 = Field(Raw(b"##"))
>>> f2 = Field(Padding([f0, f1], data=Raw(b'\x00'), modulo=128, factor=1./2))
>>> f = Field([f0, f1, f2])
>>> d = f.specialize()
>>> d[12:]
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
>>> len(d) * 8
176

The following code illustrates a padding with the use of a callback function that helps to
determine the padding value. In this example, the padding value is an incrementing integer.

>>> from netzob.all import *
>>> f0 = Field(Raw(nbBytes=10))
>>> f1 = Field(Raw(b"##"))
>>> def cbk_data(current_length, modulo):
... length_to_pad = modulo - (current_length % modulo) # Length in bits
... length_to_pad = int(length_to_pad / 8) # Length in bytes
... res_bytes = b"".join([t.to_bytes(1, byteorder='big') for t in list(range(length_to_
→˓pad))])

... res_bits = bitarray(endian='big')

... res_bits.frombytes(res_bytes)

... return res_bits

Ref : Netzob API ©2017 AMOSSYS Page 44

Test Platform: Language Specifications

>>> f2 = Field(Padding([f0, f1], data=cbk_data, modulo=128))
>>> f = Field([f0, f1, f2])
>>> d = f.specialize()
>>> d[12:]
b'\x00\x01\x02\x03'
>>> len(d) * 8
128

The following code illustrates a padding with the use of a callback function that helps to
determine the padding value. In this example, the padding value is a repetition of an incre-
menting integer, thus implementing the PKCS #7 padding.

>>> from netzob.all import *
>>> f0 = Field(Raw(nbBytes=10))
>>> f1 = Field(Raw(b"##"))
>>> def cbk_data(current_length, modulo):
... length_to_pad = modulo - (current_length % modulo) # Length in bits
... length_to_pad = int(length_to_pad / 8) # Length in bytes
... res_bytes = b"".join([int(length_to_pad).to_bytes(1, byteorder='big') * length_to_
→˓pad])

... res_bits = bitarray(endian='big')

... res_bits.frombytes(res_bytes)

... return res_bits
>>> f2 = Field(Padding([f0, f1], data=cbk_data, modulo=128))
>>> f = Field([f0, f1, f2])
>>> d = f.specialize()
>>> d[12:]
b'\x04\x04\x04\x04'
>>> len(d) * 8
128

1.6.4 Checksum Relationships

This chapter covers the following requirements: 39.

The ZDL language enables the definition of checksum relationships between fields.

Checksum API

As an example, the API for the CRC16 checksum is as follows:

class CRC16(targets)
This class implements the CRC16 function.

The constructor expects some parameters:

Parameters targets (a list of Field, required) – The targeted fields of the
relationship.

The following example shows how to create a checksum relationship with another field:

>>> from netzob.all import *
>>> import binascii
>>> f1 = Field(Raw(b'\xaa\xbb'))
>>> f2 = Field(CRC16([f1]))
>>> f = Field([f1, f2])

Ref : Netzob API ©2017 AMOSSYS Page 45

https://docs.python.org/3/library/stdtypes.html#list

Test Platform: Language Specifications

>>> binascii.hexlify(f.specialize())
b'aabb3ed3'

The following example shows how to create a checksum relationship with a group of fields:

>>> from netzob.all import *
>>> import binascii
>>> f1 = Field(Raw(b'\xaa\xbb'))
>>> f2 = Field(Raw(b'\xcc\xdd'))
>>> f3 = Field(Raw(b'\xee\xff'))
>>> f4 = Field(CRC16([f1, f2, f3]))
>>> f = Field([f1, f2, f3, f4])
>>> binascii.hexlify(f.specialize())
b'aabbccddeeff5e9b'

Available checksums

The following list shows the available checksums. The API for those checksums are similar to the
CRC16 API.

• CRC16(targets)

• CRC16DNP(targets)

• CRC16Kermit(targets)

• CRC16SICK(targets)

• CRC32(targets)

• CRCCCITT(targets)

• InternetChecksum(targets) (used in ICMP, UDP, IP, TCP protocols, as specified
in RFC 1071).

1.6.5 Hash Relationships

This chapter covers the following requirements: 39.

The ZDL language enables the definition of hash relationships between fields.

Hash API

As an example, the API for the MD5 hash is as follows:

class MD5(targets)
This class implements the MD5 relationships between fields.

The constructor expects some parameters:

Parameters targets (a list of Field, required) – The targeted fields of the
relationship.

The following example shows how to create a hash relation with another field:

Ref : Netzob API ©2017 AMOSSYS Page 46

https://tools.ietf.org/html/rfc1071.html
https://docs.python.org/3/library/stdtypes.html#list

Test Platform: Language Specifications

>>> from netzob.all import *
>>> import binascii
>>> f1 = Field(Raw(b'\xaa\xbb'))
>>> f2 = Field(MD5([f1]))
>>> f = Field([f1, f2])
>>> binascii.hexlify(f.specialize())
b'aabb58cea1f6b2b06520613e09af90dc1c47'

Available hashes

The following list shows the available hashes. The API for those hashes are similar to the MD5
API.

• MD5(targets)

• SHA1(targets)

• SHA1_96(targets)

• SHA2_224(targets)

• SHA2_256(targets)

• SHA2_384(targets)

• SHA2_512(targets)

1.6.6 HMAC Relationships

This chapter covers the following requirements: 39.

The ZDL language enables the definition of HMAC relationships between fields.

HMAC API

As an example, the API for the HMAC_MD5 is as follows:

class HMAC_MD5(targets, key)
This class implements the HMAC_MD5.

The constructor expects some parameters:

Parameters

• targets (a list of Field, required) – The targeted fields of the
relationship.

• key (bytes, required) – The cryptographic key used in the hmac com-
putation.

The following example shows how to create a HMAC relation with another field:

>>> from netzob.all import *
>>> import binascii
>>> f1 = Field(Raw(b'\xaa\xbb'))

Ref : Netzob API ©2017 AMOSSYS Page 47

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#bytes

Test Platform: Language Specifications

>>> f2 = Field(HMAC_MD5([f1], key=b'1234'))
>>> f = Field([f1, f2])
>>> binascii.hexlify(f.specialize())
b'aabbb71c98baa40dc8a49361816d5dc1eb25'

Available HMACs

The following list shows the available HMACs. The API for those HMACs are similar to the
HMAC_MD5 API.

• HMAC_MD5(targets, key)

• HMAC_SHA1(targets, key)

• HMAC_SHA1_96(targets, key)

• HMAC_SHA2_224(targets, key)

• HMAC_SHA2_256(targets, key)

• HMAC_SHA2_384(targets, key)

• HMAC_SHA2_512(targets, key)

1.7 Modeling Symbols

In the API, symbol modeling is done through the class Symbol.

class Symbol(fields=None, messages=None, name=’Symbol’)
The Symbol class is a main component of the Netzob protocol model.

A symbol represents an abstraction of all messages of the same type from a protocol per-
spective. A symbol structure is made of fields.

The Symbol constructor expects some parameters:

Parameters

• fields (a list of Field, optional) – The fields that participate in
the symbol definition, in the wire order. May be None (thus, a generic
Field instance would be defined), especially when using Symbols for
reverse engineering (i.e. fields identification).

• messages (a list of AbstractMessage, optional) – The mes-
sages that are associated with the symbol. May be None (thus, an
empty list would be defined), especially when modeling a protocol
from scratch (i.e. the fields are already known).

• name (str, optional) – The name of the symbol. If not specified, the
default name will be “Symbol”.

The Symbol class provides the following public variables:

Ref : Netzob API ©2017 AMOSSYS Page 48

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Test Platform: Language Specifications

Variables

• name (str) – The name of the symbol.

• description (str) – The description of the symbol.

• fields (a list of Field) – The sorted list of sub-fields.

Usage of Symbol for protocol modeling

The Symbol class may be used to model a protocol from scratch, by specifying its structure
in terms of fields:

>>> from netzob.all import *
>>> f0 = Field("aaaa")
>>> f1 = Field(" # ")
>>> f2 = Field("bbbbbb")
>>> symbol = Symbol(fields=[f0, f1, f2])
>>> print(symbol.str_structure())
Symbol
|-- Field

|-- Data (String=aaaa ((None, None)))
|-- Field

|-- Data (String= # ((None, None)))
|-- Field

|-- Data (String=bbbbbb ((None, None)))

Usage of Symbol for traffic generation and parsing

A Symbol class may be used to generate concrete messages according to its field definition,
through the specialize() method, and may also be used to abstract a concrete message
into its associated symbol through the abstract() method:

>>> from netzob.all import *
>>> f0 = Field("aaaa")
>>> f1 = Field(" # ")
>>> f2 = Field("bbbbbb")
>>> symbol = Symbol(fields=[f0, f1, f2])
>>> concrete_message = symbol.specialize()
>>> concrete_message
b'aaaa # bbbbbb'
>>> (abstracted_symbol, structured_data) = Symbol.abstract(concrete_message, [symbol])
>>> abstracted_symbol == symbol
True

specialize(presets=None, fuzz=None, memory=None)
The method specialize() generates a bytes sequence whose content follows the
symbol definition.

The specialize() method expects some parameters:

Parameters

• presets (dict, optional) – A dictionary of keys:values used to pre-
set (parameterize) fields during symbol specialization. Values in this
dictionary will override any field definition, constraints or relationship
dependencies.

Ref : Netzob API ©2017 AMOSSYS Page 49

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#dict

Test Platform: Language Specifications

• fuzz (Fuzz, optional) – A fuzzing configuration used during the
specialization process. Values in this configuration will override any
field definition, constraints, relationship dependencies or parameterized
fields. See Fuzz for a complete explanation of its use for fuzzing pur-
pose.

• memory (Memory , optional) – A memory used to store variable values
during specialization and abstraction of successive symbols, especially
to handle inter-symbol relationships. If None, a temporary memory is
created by default and used internally during the scope of the special-
ization process.

Returns The produced content after specializing the symbol.

Return type bytes

Raises GenerationException if an error occurs while specializing the
field.

The following example shows the specialize() method used for a field which
contains a String and a Size fields.

>>> from netzob.all import *
>>> f1 = Field(domain=String(nbChars=5))
>>> f0 = Field(domain=Size(f1))
>>> s = Symbol(fields=[f0, f1])
>>> result = s.specialize()
>>> result[0]
5
>>> len(result)
6

Parameterized specialization of field values (‘presets=‘ parameter)

It is possible to preset (parameterize) fields during symbol specialization, through a dict
passed in the presets= parameter of the specialize() method. Values in this
dictionary will override any field definition, constraints or relationship dependencies.

The presets dictionary accepts a sequence of keys and values, where keys correspond
to the fields in the symbol that we want to override, and values correspond to the
overriding content. Keys are either expressed as Field objects or strings containing
field accessors when field names are used (such as in f = Field(name="udp.
dport")). Values are either expressed as bitarray (as it is the internal type for
variables in the Netzob library), as :class:‘bytes’ or in the type of the overridden field
variable.

The following code shows the definition of a simplified UDP header that will be later
used as base example. This UDP header is made of one named field containing a
destination port, and a named field containing a payload:

>>> from netzob.all import *
>>> f_dport = Field(name="udp.dport", domain=Integer(unitSize=UnitSize.SIZE_8))

Ref : Netzob API ©2017 AMOSSYS Page 50

https://docs.python.org/3/library/stdtypes.html#bytes

Test Platform: Language Specifications

>>> f_payload = Field(name="udp.payload", domain=Raw(nbBytes=2))
>>> symbol_udp = Symbol(name="udp", fields=[f_dport, f_payload])

The three following codes show the same way to express the parameterized values
during specialization of the fields udp_dport and udp_payload:

>>> from netzob.all import *
>>> presets = {}
>>> presets["udp.dport"] = 11 # udp.dport expects an int or an Integer
>>> presets["udp.payload"] = b"\xaa\xbb" # udp.payload expects a bytes object or a
→˓Raw object

>>> symbol_udp.specialize(presets=presets)
b'\x0b\xaa\xbb'

>>> from netzob.all import *
>>> presets = {}
>>> presets["udp.dport"] = Integer(11) # udp.dport expects an int or an Integer
>>> presets["udp.payload"] = Raw(b"\xaa\xbb") # udp.payload expects a bytes object
→˓or a Raw object

>>> symbol_udp.specialize(presets=presets)
b'\x0b\xaa\xbb'

>>> from netzob.all import *
>>> presets = {}
>>> presets["udp.dport"] = bitarray('00001011', endian='big')
>>> presets["udp.payload"] = bitarray('1010101010111011', endian='big')
>>> symbol_udp.specialize(presets=presets)
b'\x0b\xaa\xbb'

The previous example shows the use of BitArray as dict values. BitArray are always
permitted for any parameterized field, as it is the internal type for variables in the
Netzob library.

The two following codes show the same way to express the parameterized keys during
specialization of the fields udp_dport and udp_payload:

>>> from netzob.all import *
>>> presets = {}
>>> presets[f_dport] = 11
>>> presets[f_payload] = b"\xaa\xbb"
>>> symbol_udp.specialize(presets=presets)
b'\x0b\xaa\xbb'

>>> from netzob.all import *
>>> presets = {}
>>> presets["udp.dport"] = 11
>>> presets["udp.payload"] = b"\xaa\xbb"
>>> symbol_udp.specialize(presets=presets)
b'\x0b\xaa\xbb'

A preset value bypasses all the constraint checks on your field definition. For example,
in the following example it can be used to bypass a size field definition.

>>> from netzob.all import *
>>> f1 = Field()
>>> f2 = Field(domain=Raw(nbBytes=(10,15)))
>>> f1.domain = Size(f2)
>>> s = Symbol(fields=[f1, f2])

Ref : Netzob API ©2017 AMOSSYS Page 51

Test Platform: Language Specifications

>>> presetValues = {f1: bitarray('11111111')}
>>> s.specialize(presets = presetValues)[0]
255

Fuzzing of Fields

It is possible to fuzz fields during symbol specialization, through the fuzz= parame-
ter of the specialize() method. Values in this parameter will override any field
definition, constraints, relationship dependencies or parameterized values.

For more information regarding the expected fuzz= parameter content, see the class
Fuzz.

specialize_count(presets=None, fuzz=None, timeout=None)
The method specialize_count() computes the expected number of unique pro-
duced messages, considering the initial symbol model, the preset fields and the fuzzed
fields.

The specialize_count() method expects the same parameters as the
specialize() method:

Parameters

• presets (dict, optional) – A dictionary of keys:values used to pre-
set (parameterize) fields during symbol specialization. Values in this
dictionary will override any field definition, constraints or relationship
dependencies.

• fuzz (Fuzz, optional) – A fuzzing configuration used during the
specialization process. Values in this configuration will override any
field definition, constraints, relationship dependencies or parameterized
fields. See Fuzz for a complete explanation of its use for fuzzing pur-
pose.

• timeout (float or int in seconds) – The computation time beyond
which -1 is returned

Returns The number of unique values the symbol specialization can produce.

Return type a int

Note: The theorical value returned by specialize_count() may be huge and
hard to compute considering the number of variables involved. Beyond timeout the
computation would return the special value -1 indicating a too large value to compute.

>>> # Symbol definition
>>> from netzob.all import *
>>> f1 = Field(uint16(interval=(50, 1000)))
>>> f2 = Field(uint8())
>>> f3 = Field(uint8())
>>> symbol = Symbol(fields=[f1, f2, f3])

Ref : Netzob API ©2017 AMOSSYS Page 52

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Test Platform: Language Specifications

>>>
>>> # Specify the preset fields
>>> presetValues = {f1: bitarray('1111111111111111')}
>>>
>>> # Count the expected number of unique produced messages
>>> symbol.specialize_count(presets=presetValues)
279

abstract(data, fields, memory=None)
The method abstract() is used to retrieve the corresponding symbol according to
a concrete bytes message.

The abstract() static method expects some parameters:

Parameters

• data (bytes, required) – The concrete message to abstract in sym-
bol.

• fields (list of Field, required) – a list of fields targeted during
the abstraction process

• memory (Memory , optional) – A memory used to store variable values
during specialization and abstraction of sequence of symbols.

Returns a field/symbol and the structured received message

Return type a tuple (Field, dict)

Raises AbstractionException if an error occurs while abstracting the
data

>>> from netzob.all import *
>>> messages = ["{0}, what's up in {1} ?".format(pseudo, city)
... for pseudo in ['john', 'kurt']
... for city in ['Paris', 'Berlin']]

>>> f1a = Field(name="name", domain="john")
>>> f2a = Field(name="question", domain=", what's up in ")
>>> f3a = Field(name="city", domain=Alt(["Paris", "Berlin"]))
>>> f4a = Field(name="mark", domain=" ?")
>>> s1 = Symbol([f1a, f2a, f3a, f4a], name="Symbol-john")

>>> f1b = Field(name="name", domain="kurt")
>>> f2b = Field(name="question", domain=", what's up in ")
>>> f3b = Field(name="city", domain=Alt(["Paris", "Berlin"]))
>>> f4b = Field(name="mark", domain=" ?")
>>> s2 = Symbol([f1b, f2b, f3b, f4b], name="Symbol-kurt")

>>> for m in messages:
... (abstractedSymbol, structured_data) = Symbol.abstract(m, [s1, s2])
... print(structured_data)
... print(abstractedSymbol.name)
OrderedDict([('name', b'john'), ('question', b", what's up in "), ('city', b'Paris'),
→˓ ('mark', b' ?')])

Symbol-john
OrderedDict([('name', b'john'), ('question', b", what's up in "), ('city', b'Berlin'),
→˓ ('mark', b' ?')])

Ref : Netzob API ©2017 AMOSSYS Page 53

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list

Test Platform: Language Specifications

Symbol-john
OrderedDict([('name', b'kurt'), ('question', b", what's up in "), ('city', b'Paris'),
→˓ ('mark', b' ?')])

Symbol-kurt
OrderedDict([('name', b'kurt'), ('question', b", what's up in "), ('city', b'Berlin'),
→˓ ('mark', b' ?')])

Symbol-kurt

getField(field_name)
Retrieve a sub-field based on its name.

Parameters field_name (str, required) – the name of the Field object

Returns The sub-field object.

Return type Field

The following example shows how to retrieve a sub-field based on its name:

>>> from netzob.all import *
>>> f1 = Field("hello", name="f1")
>>> f2 = Field("hello", name="f3")
>>> f3 = Field("hello", name="f2")
>>> fheader = Field("hello", name="fheader")
>>> fheader.fields = [f1, f2, f3]
>>> fheader.getField('f2')
f2
>>> type(fheader.getField('f2'))
<class 'netzob.Model.Vocabulary.Field.Field'>

getSymbol()
Return the symbol to which this field is attached.

Returns The associated symbol if available.

Return type Symbol

Raises NoSymbolException

To retrieve the associated symbol, this method recursively call the parent of the current
object until the root is found.

If the root is not a Symbol, this raises an Exception.

The following example shows how to retrieve the parent symbol from a field object:

>>> from netzob.all import *
>>> field = Field("hello", name="F0")
>>> symbol = Symbol([field], name="S0")
>>> field.getSymbol()
S0
>>> type(field.getSymbol())
<class 'netzob.Model.Vocabulary.Symbol.Symbol'>

str_structure(deepness=0)
Returns a string which denotes the current symbol/field definition using a tree display.

Ref : Netzob API ©2017 AMOSSYS Page 54

https://docs.python.org/3/library/stdtypes.html#str

Test Platform: Language Specifications

Parameters deepness (int, required) – Parameter used to specify the
number of indentations.

Returns The current symbol/field represented as a string.

Return type str

>>> from netzob.all import *
>>> f1 = Field(String(), name="field1")
>>> f2 = Field(Integer(interval=(10, 100)), name="field2")
>>> f3 = Field(Raw(nbBytes=14), name="field3")
>>> symbol = Symbol([f1, f2, f3], name="symbol_name")
>>> print(symbol.str_structure())
symbol_name
|-- field1

|-- Data (String=None ((None, None)))
|-- field2

|-- Data (Integer=None ((10, 100)))
|-- field3

|-- Data (Raw=None ((112, 112)))
>>> print(f1.str_structure())
field1
|-- Data (String=None ((None, None)))

Ref : Netzob API ©2017 AMOSSYS Page 55

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Test Platform: Language Specifications

1.8 Persistence during Specialization and Abstraction of
Symbols

In the API, a memory capability is provided in order to support relationships between variables, as
well as variable persistence during the specialization and abstraction processes. This capability is
described in the Memory class.

class Memory
This class provides a memory, used to store variable values (in bitarray) in a persisting and
independent way.

To compute or verify the constraints and relationships that participate in the definition of
the fields, the Netzob library relies on a memory. This memory stores the values of previ-
ously captured or emitted fields. More precisely, the Memory contains all the field variables
that are needed according to the field definition during the abstraction and specialization
processes.

memorize(variable, value)
Memorizes the provided variable value.

Parameters

• variable (Variable, required) – The variable for which we want
to memorize a value.

• value (bitarray, required) – The value to memorize.

>>> from netzob.all import *
>>> variable = Data(String(), name="var1")
>>> memory = Memory()
>>> memory.memorize(variable, String("hello").value)
>>> print(memory)
Data (String=None ((None, None))): b'hello'

hasValue(variable)
Returns true if the memory contains a value for the provided variable.

Parameters variable (Variable, required) – The variable to look for
in the memory.

Returns True if the memory contains a value for the variable.

Return type bool

>>> from netzob.all import *
>>> variable = Data(String(), name="var1")
>>> memory = Memory()
>>> memory.memorize(variable, String("hello").value)
>>> memory.hasValue(variable)
True
>>> variable2 = Data(String(), name="var2")
>>> memory.hasValue(variable2)
False

Ref : Netzob API ©2017 AMOSSYS Page 56

https://docs.python.org/3/library/functions.html#bool

Test Platform: Language Specifications

getValue(variable)
Returns the value memorized for the provided variable.

Parameters variable (Variable, required) – The variable for which we
want to retrieve the value in memory.

Returns The value in memory.

Return type bitarray

>>> from netzob.all import *
>>> variable = Data(String(), name="var1")
>>> memory = Memory()
>>> memory.memorize(variable, String("hello").value)
>>> memory.getValue(variable).tobytes()
b'hello'

forget(variable)
Forgets any memorized value of the provided variable

Parameters variable (Variable, required) – The variable for which we
want to forget the value in memory.

>>> from netzob.all import *
>>> variable = Data(String(), name="var1")
>>> memory = Memory()
>>> memory.memorize(variable, String("hello").value)
>>> memory.hasValue(variable)
True
>>> memory.forget(variable)
>>> memory.hasValue(variable)
False

duplicate()
Duplicates the current memory in a new memory.

Returns A new memory containing the same entries than the current mem-
ory.

Return type Memory

>>> from netzob.all import *
>>> d1 = Data(Integer())
>>> d2 = Data(String())
>>> m = Memory()
>>> m.memorize(d1, Integer(100).value)
>>> m.memorize(d2, String("hello").value)
>>> m.getValue(d1)
bitarray('01100100')
>>> m2 = m.duplicate()
>>> m2.getValue(d1)
bitarray('01100100')
>>> m.getValue(d1).bytereverse()
>>> m.getValue(d1)
bitarray('00100110')
>>> m2.getValue(d1)
bitarray('01100100')

Ref : Netzob API ©2017 AMOSSYS Page 57

Test Platform: Language Specifications

The values of variables defined in fields can have different assignment strategies, depending on
their persistence and lifecycle. Four assignment strategies are available, in order to describe:

• Constant values.

• Persistent values.

• Ephemeral values.

• Volatile values.

The SVAS class provides a description of those strategies, along with some examples.

class SVAS
This class represents the Assignment Strategy of a variable.

The State Variable Assignment Strategy (SVAS) of a variable defines how its value is used
while abstracting and specializing, and therefore impacts the memorization strategy.

A SVAS strategy can be attached to a variable and is used both when abstracting and spe-
cializing. A SVAS strategy describes the set of memory operations that must be performed
each time a variable is abstracted or specialized. These operations can be separated into two
groups, those used during the abstraction and those used during the specialization.

The available SVAS strategies for a variable are:

• SVAS.CONSTANT

• SVAS.EPHEMERAL (the default strategy for variables)

• SVAS.VOLATILE

• SVAS.PERSISTENT

Those strategies are explained below. Besides some following examples are shown in order
to understand how the strategies can be applied during abstraction and specialization of Field
with Data variables.

• SVAS.CONSTANT: A constant value denotes a static content defined once and for all
in the protocol. When abstracting, the concrete value is compared with the symbolic
value which is a constant and succeeds only if it matches. On the other hand, the
specialization of a constant value does not imply any additional operations than just
using the value as is. A typical example of a constant value is a magic number in a
protocol or a delimiter field.

The following example shows the abstraction of a constant data, through the parsing
of a message that corresponds to the expected model:

>>> from netzob.all import *
>>> f = Field(name='f1')
>>> value = String("john").value
>>> f.domain = Data(String(), originalValue=value, svas=SVAS.CONSTANT)
>>> s = Symbol(name="S0", fields=[f])
>>> m = Memory()

Ref : Netzob API ©2017 AMOSSYS Page 58

Test Platform: Language Specifications

>>> Symbol.abstract("john", [s], memory=m)
(S0, OrderedDict([('f1', b'john')]))

The following example shows that the abstraction of a data that does not correspond to
the expected model returns an unknown symbol:

>>> from netzob.all import *
>>> f = Field(name='f1')
>>> value = String("john").value
>>> f.domain = Data(String(), originalValue=value, svas=SVAS.CONSTANT)
>>> s = Symbol(name="S0", fields=[f])
>>> m = Memory()
>>> Symbol.abstract("kurt", [s], memory=m)
(Unknown message 'kurt', OrderedDict())

The following example shows the specialization of a constant data:

>>> from netzob.all import *
>>> f = Field(name='f1')
>>> value = String("john").value
>>> f.domain = Data(String(), originalValue=value, svas=SVAS.CONSTANT)
>>> s = Symbol(name="S0", fields=[f])
>>> m = Memory()
>>> s.specialize(memory=m)
b'john'
>>> s.specialize(memory=m)
b'john'
>>> len(str(m))
0

The following example shows that the specialization of a constant data raises an excep-
tion when no original value is attached to the definition domain of the variable:

>>> from netzob.all import *
>>> f = Field(name='f1')
>>> f.domain = Data(String(nbChars=(5, 10)), svas=SVAS.CONSTANT)
>>> s = Symbol(name="S0", fields=[f])
>>> m = Memory()
>>> s.specialize(memory=m)
Traceback (most recent call last):

...
Exception: Cannot specialize this symbol.

• SVAS.PERSISTENT: A persistent value carries a value, such as a session identifier,
generated and memorized during its first specialization and reused as such in the re-
mainder of the session. Conversely, the first time such persistent field is abstracted, its
variable’s value is not defined and the received value is saved. Later in the session, if
this field is abstracted again, the corresponding variable is then defined and we compare
the received field value against the memorized one.

The following example shows the abstraction of a persistent data:

>>> from netzob.all import *
>>> f = Field(name='f1')
>>> f.domain = Data(String(nbChars=(5, 10)), svas=SVAS.PERSISTENT)
>>> s = Symbol(name="S0", fields=[f])
>>> m = Memory()
>>> Symbol.abstract("dylan", [s], memory=m)

Ref : Netzob API ©2017 AMOSSYS Page 59

Test Platform: Language Specifications

(S0, OrderedDict([('f1', b'dylan')]))
>>> Symbol.abstract("dylan", [s], memory=m)
(S0, OrderedDict([('f1', b'dylan')]))

The following example shows that the abstraction of a persistent data that does not
correspond to the expected model returns a unknown symbol:

>>> from netzob.all import *
>>> f = Field(name='f1')
>>> f.domain = Data(String(nbChars=(5, 10)), svas=SVAS.PERSISTENT)
>>> s = Symbol(name="S0", fields=[f])
>>> m = Memory()
>>> Symbol.abstract("kurt", [s], memory=m)
(Unknown message 'kurt', OrderedDict())

The following examples show the specialization of a persistent data:

>>> from netzob.all import *
>>> f = Field(name='f1')
>>> value = String("john").value
>>> f.domain = Data(String(), originalValue=value, svas=SVAS.PERSISTENT)
>>> s = Symbol(name="S0", fields=[f])
>>> m = Memory()
>>> s.specialize(memory=m)
b'john'
>>> len(str(m))
0

>>> from netzob.all import *
>>> f = Field()
>>> f.domain = Data(String(nbChars=5), svas=SVAS.PERSISTENT)
>>> s = Symbol(name="S0", fields=[f])
>>> m = Memory()
>>> generated1 = s.specialize(memory=m)
>>> len(generated1)
5
>>> m.hasValue(f.domain)
True
>>> generated2 = s.specialize(memory=m)
>>> len(generated2)
5
>>> generated1 == generated2
True

• SVAS.EPHEMERAL: The value of an ephemeral variable is regenerated each time it
is specialized. The generated value is memorized, and can then be used afterwards to
abstract or specialize other fields. During abstraction, the value of this field is always
learned for the same reason. For example, the IRC nick command includes such an
ephemeral field that denotes the new nick name of the user. This nick name can af-
terward be used in other fields but whenever a NICK command is emitted, its value is
regenerated.

The following example shows the abstraction of an ephemeral data:

>>> from netzob.all import *
>>> f = Field(name='f1')
>>> f.domain = Data(String(nbChars=(4, 10)), svas=SVAS.EPHEMERAL)
>>> s = Symbol(name="S0", fields=[f])
>>> m = Memory()

Ref : Netzob API ©2017 AMOSSYS Page 60

Test Platform: Language Specifications

>>> Symbol.abstract("john", [s], memory=m)
(S0, OrderedDict([('f1', b'john')]))
>>> print(m)
Data (String=None ((32, 80))): b'john'
>>> Symbol.abstract("john", [s], memory=m)
(S0, OrderedDict([('f1', b'john')]))
>>> print(m)
Data (String=None ((32, 80))): b'john'
>>> Symbol.abstract("kurt", [s], memory=m)
(S0, OrderedDict([('f1', b'kurt')]))
>>> print(m)
Data (String=None ((32, 80))): b'kurt'

The following examples show the specialization of an ephemeral data:

>>> from netzob.all import *
>>> f = Field(name='f1')
>>> value = String("john").value
>>> f.domain = Data(String(), originalValue=value, svas=SVAS.EPHEMERAL)
>>> s = Symbol(name="S0", fields=[f])
>>> m = Memory()
>>> m.hasValue(f.domain)
False
>>> generated1 = s.specialize(memory=m)
>>> m.hasValue(f.domain)
True
>>> generated2 = s.specialize(memory=m)
>>> generated1 == generated2
False

• SVAS.VOLATILE: A volatile variable denotes a value which changes whenever it
is specialized and that is never memorized. It can be seen as an optimization of an
ephemeral variable to reduce the memory usages. Thus, the abstraction process of such
field only verifies that the received value complies with the field definition domain
without memorizing it. For example, a size field or a CRC field is a volatile field.

The following example shows the abstraction of a volatile data:

>>> from netzob.all import *
>>> f = Field(name='f1')
>>> f.domain = Data(String(nbChars=(4, 10)), svas=SVAS.VOLATILE)
>>> s = Symbol(name="S0", fields=[f])
>>> m = Memory()
>>> Symbol.abstract("john", [s], memory=m)
(S0, OrderedDict([('f1', b'john')]))
>>> len(m)
0
>>> Symbol.abstract("john", [s], memory=m)
(S0, OrderedDict([('f1', b'john')]))
>>> len(m)
0
>>> Symbol.abstract("kurt", [s], memory=m)
(S0, OrderedDict([('f1', b'kurt')]))
>>> len(m)
0

The following example shows the specialization of a volatile data:

>>> from netzob.all import *
>>> f = Field(name='f1')
>>> f.domain = Data(String(nbChars=(5,10)), svas=SVAS.VOLATILE)

Ref : Netzob API ©2017 AMOSSYS Page 61

Test Platform: Language Specifications

>>> s = Symbol(name="S0", fields=[f])
>>> m = Memory()
>>> m.hasValue(f.domain)
False
>>> generated = s.specialize(memory=m)
>>> m.hasValue(f.domain)
False

Ref : Netzob API ©2017 AMOSSYS Page 62

Test Platform: Language Specifications

2 Sending and Receiving Messages

This chapter covers the following requirements: 40.

2.1 Underlying Concepts

In the Netzob library, a communication channel is an element allowing a connection to a remote
device. Generally, if the device is connected with Ethernet network, the channel includes a socket
object and all the properties used to configure it. The channel also provides the connection status
and send/receive APIs.

An abstraction component, called AbstractionLayer (see AbstractionLayer), enables the
specialization of a symbol in a contextualized concrete message, and the abstraction of a received
message into a symbol. A Memory (see Memory) is used to keep track of a context for a specific
communication. This memory can leverage variable from the protocol or even the environment.
The memory is initialized at the beginning of the communication, and its internal state evolves
throughout the exchanged messages.

Those elements are described in this chapter.

2.2 Communication Channel API

Each communication channel provides the following API:

class AbstractChannel
A communication channel is an element allowing to establish a connection to or from a
remote device.

The AbstractChannel defines the API of a communication channel.

A communication channel provides the following public variables:

Variables

• isOpen (bool) – The status of the communication channel.

• timeout (int) – The default timeout in seconds for opening a connec-
tion and waiting for a message.

• header (Symbol) – A Symbol that permits to access to the protocol
header.

• header_presets (dict, optional) – A dictionary of keys:values
used to preset (parameterize) the header fields during symbol special-
ization. See Symbol.specialize for more information.

Ref : Netzob API ©2017 AMOSSYS Page 63

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Test Platform: Language Specifications

setSendLimit(maxValue)
Change the max number of writings.

When it is reached, no packet can be sent anymore until clearSendLimit() is
called.

If maxValue is -1, the sending limit is deactivated.

Parameters maxValue (int) – the new max value

clearSendLimit()
Reset the writing counters.

write(data, rate=None, duration=None)
Write to the communication channel the specified data, either one time, either in loop
according to the rate and duration parameter.

Parameters

• data (bytes, required) – The data to write on the channel.

• rate (int, optional) – This specifies the bandwidth in octets to re-
spect during traffic emission (should be used with duration= parame-
ter).

• duration (int, optional) – This tells how much seconds the data is
continuously written on the channel.

Returns The amount of written data, in bytes.

Return type int

checkReceived(predicate, *args, **kwargs)
Method used to delegate the validation of the received data into a callback

Parameters

• predicate (Callable[[bytes], bool]) – the function used
to validate the received data

• args – positional arguments passed to predicate

• kwargs – named arguments passed to predicate

close()
Close the communication channel.

open(timeout=None)
Open the communication channel. If the channel is a server, it starts to listen for in-
coming data.

Parameters timeout (float, optional) – The default timeout of the chan-
nel for opening connection and waiting for a message. Default value is
blocking (None).

Ref : Netzob API ©2017 AMOSSYS Page 64

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

Test Platform: Language Specifications

read()
Read the next message from the communication channel.

Returns The received data.

Return type bytes

sendReceive(data)
Write on the communication channel the specified data, wait for a response and return
the received data.

Parameters data (bytes) – The data to write on the channel.

Returns The received data.

Return type bytes

2.3 Available Communication Channels

The available communication channels are the following:

• RawEthernetChannel: this channel sends/receives Ethernet frames (with Ethernet
header computed by this channel).

• RawIPChannel: this channel sends/receives IP payloads (with IP header computed by this
channel).

• IPChannel: this channel sends/receives IP payloads (with IP header computed by the OS
kernel).

• UDPClient: this channel provides the connection of a client to a specific IP:Port server
over a UDP socket.

• TCPClient: this channel provides the connection of a client to a specific IP:Port server
over a TCP socket.

• UDPServer: this channel provides a server listening to a specific IP:Port over a UDP
socket.

• TCPServer: this channel provides a server listening to a specific IP:Port over a TCP socket.

• SSLClient: this channel provides the connection of a client to a specific IP:Port server
over a TCP/SSL socket.

• DebugChannel: this channel provides a way to log I/O’s into a specific stream

Each communication channel is described in the next sub-chapters.

Ref : Netzob API ©2017 AMOSSYS Page 65

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

Test Platform: Language Specifications

2.3.1 RawEthernetChannel channel

This chapter covers the following requirements: 63.

class RawEthernetChannel(interface, remoteMac=None, localMac=None, time-
out=None)

A RawEthernetChannel is a communication channel to send Ethernet frames. This channel
is responsible for building the Ethernet layer.

The RawEthernetChannel constructor expects some parameters:

Parameters

• interface (str, required) – The local network interface name (such
as ‘eth0’, ‘lo’).

• remoteMac (str, required) – The remote MAC address to connect to.

• localMac (str, required) – The local MAC address.

• timeout (float, optional) – The default timeout of the channel for
global connection. Default value is blocking (None).

Adding to AbstractChannel variables, the RawEthernetChannel class provides the following
public variables:

Variables

• remoteMac (str) – The remote MAC address to connect to.

• localMac (str) – The local MAC address.

• interface (str) – The network Interface name such as ‘eth0’, ‘lo’,
determined with the local MAC address. Read only variable.

>>> from netzob.all import *
>>> from binascii import hexlify
>>> client = RawEthernetChannel(interface="lo",
... remoteMac="00:01:02:03:04:05",
... localMac="00:06:07:08:09:10")
>>> client.open()
>>> symbol = Symbol([Field("ABC")])
>>> client.write(symbol.specialize())
17
>>> client.close()

2.3.2 RawIPChannel channel

This chapter covers the following requirements: 64, 65, 66.

class RawIPChannel(remoteIP, localIP=None, upperProtocol=6, timeout=None)
A RawIPChannel is a communication channel to send IP payloads. This channel is re-
sponsible to build the IP header. It is similar to IPChannel channel, except that with

Ref : Netzob API ©2017 AMOSSYS Page 66

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Test Platform: Language Specifications

IPChannel the OS kernel builds the IP header. Therefore, with RawIPChannel, we can
modify or fuzz the IP header fields.

The RawIPChannel constructor expects some parameters:

Parameters

• remoteIP (str, required) – The remote IP address to connect to.

• localIP (str, optional) – The local IP address. Default value is the
local IP address corresponding to the network interface that will be used
to send the packet.

• upperProtocol (int, optional) – The protocol following IP in the
stack. Default value is socket.IPPROTO_TCP (6).

• timeout (float, optional) – The default timeout of the channel for
global connection. Default value is blocking (None).

Adding to AbstractChannel variables, the RawIPChannel class provides the following public
variables:

Variables

• remoteIP (str) – The remote IP address to connect to.

• localIP (str) – The local IP address. Default value is the local IP ad-
dress corresponding to the interface that will be used to send the packet.

• upperProtocol (int) – The protocol following the IP header. De-
fault value is socket.IPPROTO_TCP.

The following code shows the use of a RawIPChannel channel:

>>> from netzob.all import *
>>> client = RawIPChannel(remoteIP='127.0.0.1', timeout=1.)
>>> client.open()
>>> symbol = Symbol([Field("Hello everyone!")])
>>> client.write(symbol.specialize())
>>> client.close()

2.3.3 IPChannel channel

This chapter covers the following requirements: 64, 65, 66.

class IPChannel(remoteIP, localIP=None, upperProtocol=6, timeout=None)
An IPChannel is a communication channel to send IP payloads. The kernel is responsible to
build the IP header. It is similar to RawIPChannel channel, except that with RawIPChannel
the channel builds the IP header. Therefore, with IPChannel, we cannot modify or fuzz
the IP header fields.

The IPChannel constructor expects some parameters:

Ref : Netzob API ©2017 AMOSSYS Page 67

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Test Platform: Language Specifications

Parameters

• remoteIP (str, required) – The remote IP address to connect to.

• localIP (str, optional) – The local IP address. Default value is the
local IP address corresponding to the interface that will be used to send
the packet.

• upperProtocol (int, optional) – The protocol following the IP
header. Default value is socket.IPPROTO_TCP.

• timeout (float, optional) – The default timeout of the channel for
global connection. Default value is blocking (None).

Adding to AbstractChannel variables, the IPChannel class provides the following public
variables:

Variables

• remoteIP (str) – The remote IP address to connect to.

• localIP (str) – The local IP address. Default value is the local IP ad-
dress corresponding to the interface that will be used to send the packet.

• upperProtocol (int) – The protocol following the IP header. De-
fault value is socket.IPPROTO_TCP.

The following code shows the use of an IPChannel channel:

>>> from netzob.all import *
>>> client = IPChannel(remoteIP='127.0.0.1', timeout=1.)
>>> client.open()
>>> symbol = Symbol([Field("Hello everyone!")])
>>> client.write(symbol.specialize())
>>> client.close()

2.3.4 UDPClient channel

This chapter covers the following requirements: 67, 68.

class UDPClient(remoteIP, remotePort, localIP=None, localPort=None, time-
out=None)

A UDPClient is a communication channel. It provides the connection of a client to a specific
IP:Port server over a UDP socket.

When the actor executes an OpenChannelTransition, it calls the open method on the UDP
client which connects to the server.

The UDPClient constructor expects some parameters:

Parameters

• remoteIP (str, required) – The remote IP address to connect to.

Ref : Netzob API ©2017 AMOSSYS Page 68

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Test Platform: Language Specifications

• remotePort (int, required) – The remote IP port.

• localIP (str, optional) – The local IP address. Default value is the
local IP address corresponding to the network interface that will be used
to send the packet.

• localPort (int, optional) – The local IP port. Default value in a
random valid integer chosen by the kernel.

• timeout (float, optional) – The default timeout of the channel for
global connection. Default value is blocking (None).

Adding to AbstractChannel variables, the UDPClient class provides the following public
variables:

Variables

• remoteIP (str) – The remote IP address to connect to.

• remotePort (int) – The remote IP port.

• localIP (str) – The local IP address. Default value is the local IP
address corresponding to the network interface that will be used to send
the packet.

• localPort (int) – The local IP port. Default value in a random valid
integer chosen by the kernel.

The following code shows the use of a UDPClient channel:

>>> from netzob.all import *
>>> client = UDPClient(remoteIP='127.0.0.1', remotePort=9999, timeout=1.)
>>> client.open()
>>> symbol = Symbol([Field("Hello everyone!")])
>>> client.write(symbol.specialize())
15
>>> client.close()

2.3.5 TCPClient channel

This chapter covers the following requirements: 71, 72, 73.

class TCPClient(remoteIP, remotePort, localIP=None, localPort=None, time-
out=None)

A TCPClient is a communication channel. It provides the connection of a client to a specific
IP:Port server over a TCP socket.

When the actor executes an OpenChannelTransition, it calls the open method on the TCP
client which connects to the server.

The TCPClient constructor expects some parameters:

Parameters

Ref : Netzob API ©2017 AMOSSYS Page 69

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Test Platform: Language Specifications

• remoteIP (str, required) – The remote IP address to connect to.

• remotePort (int, required) – The remote IP port.

• localIP (str, optional) – The local IP address. Default value is the
local IP address corresponding to the network interface that will be used
to send the packet.

• localPort (int, optional) – The local IP port. Default value in a
random valid integer chosen by the kernel.

• timeout (float, optional) – The default timeout of the channel for
global connection. Default value is blocking (None).

Adding to AbstractChannel variables, the TCPClient class provides the following public
variables:

Variables

• remoteIP (str) – The remote IP address to connect to.

• remotePort (int) – The remote IP port.

• localIP (str) – The local IP address. Default value is the local IP
address corresponding to the network interface that will be used to send
the packet.

• localPort (int) – The local IP port. Default value in a random valid
integer chosen by the kernel.

The following code shows the creation of a TCPClient channel:

>>> from netzob.all import *
>>> client = TCPClient(remoteIP='127.0.0.1', remotePort=9999, timeout=1.)

2.3.6 UDPServer channel

This chapter covers the following requirements: 67, 68, 69.

class UDPServer(localIP, localPort, timeout=None)
A UDPServer is a communication channel. It provides a server listening to a specific IP:Port
over a UDP socket.

When the actor executes an OpenChannelTransition, it calls the open method on the UDP
server which makes it to listen for incoming messages.

The UDPServer constructor expects some parameters:

Parameters

• localIP (str, required) – The local IP address.

• localPort (int, required) – The local IP port.

Ref : Netzob API ©2017 AMOSSYS Page 70

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Test Platform: Language Specifications

• timeout (float, optional) – The default timeout of the channel for
global connection. Default value is blocking (None).

Adding to AbstractChannel variables, the UDPClient class provides the following public
variables:

Variables

• localIP (str) – The local IP address.

• localPort (int) – The local IP port.

The following code shows the use of a UDPServer channel:

>>> from netzob.all import *
>>> server = UDPServer(localIP='127.0.0.1', localPort=9999, timeout=1.)
>>> server.open()
>>> server.close()

2.3.7 TCPServer channel

This chapter covers the following requirements: 71, 72, 73.

class TCPServer(localIP, localPort, timeout=None)
A TCPServer is a communication channel. It provides a server listening to a specified IP:Port
over a TCP socket.

When the actor executes an OpenChannelTransition, it calls the open method on the tcp
server which starts the server. The objective of the server is to wait for the client to connect.

The TCPServer constructor expects some parameters:

Parameters

• localIP (str, required) – The local IP address.

• localPort (int, required) – The local IP port.

• timeout (float, optional) – The default timeout of the channel for
global connection. Default value is blocking (None).

Adding to AbstractChannel variables, the TCPServer class provides the following public
variables:

Variables

• localIP (str) – The local IP address.

• localPort (int) – The local IP port.

The following code shows the creation of a TCPServer channel:

Ref : Netzob API ©2017 AMOSSYS Page 71

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Test Platform: Language Specifications

>>> from netzob.all import *
>>> server = TCPServer(localIP='127.0.0.1', localPort=9999, timeout=1.)

2.3.8 SSLClient channel

class SSLClient(remoteIP, remotePort, localIP=None, localPort=None,
server_cert_file=None, alpn_protocols=None, timeout=None)

An SSLClient is a communication channel that relies on SSL. It provides the connection of
a client to a specific IP:Port server over a TCP/SSL socket.

When the actor executes an OpenChannelTransition, it calls the open method on the ssl client
which connects to the server.

The SSLClient constructor expects some parameters:

Parameters

• remoteIP (str, required) – The remote IP address to connect to.

• remotePort (int, required) – The remote IP port.

• localIP (str, optional) – The local IP address. Default value is the
local IP address corresponding to the network interface that will be used
to send the packet.

• localPort (int, optional) – The local IP port. Default value in a
random valid integer chosen by the kernel.

• server_cert_file (str, optional) – The path to a single file in
PEM format containing the certificate as well as any number of CA cer-
tificates needed to establish the certificate’s authenticity. Default value
is None, meaning that no verification is made on the certificate given by
the peer.

• alpn_protocols (list, optional) – Specify which protocols the
socket should advertise during the SSL/TLS handshake. It should be a
list of strings, like [‘http/1.1’, ‘spdy/2’], ordered by preference. Default
value is None.

• timeout (float, optional) – The default timeout of the channel for
global connection. Default value is blocking (None).

Adding to AbstractChannel public variables, the SSLClient class provides the following
public variables:

Variables

• remoteIP (str) – The remote IP address to connect to.

• remotePort (int) – The remote IP port.

Ref : Netzob API ©2017 AMOSSYS Page 72

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Test Platform: Language Specifications

• localIP (str) – The local IP address. Default value is the local IP
address corresponding to the network interface that will be used to send
the packet.

• localPort (int) – The local IP port. Default value in a random valid
integer chosen by the kernel.

• server_cert_file (str) – The path to a single file in PEM format
containing the certificate as well as any number of CA certificates needed
to establish the certificate’s authenticity. Default value is None, meaning
that no verification is made on the certificate given by the peer.

• alpn_protocols (list) – Specify which protocols the socket
should advertise during the SSL/TLS handshake. It should be a list of
strings, like [‘http/1.1’, ‘spdy/2’], ordered by preference. Default value
is None.

The following code shows the creation of a SSLClient channel:

>>> from netzob.all import *
>>> server = SSLClient(remoteIP='127.0.0.1', remotePort=9999)

2.3.9 DebugChannel channel

class DebugChannel(stream, timeout=None)
An DebugChannel is a file-like channel that handle writing of output data.

The DebugChannel constructor expects some parameters:

Parameters

• stream (str or a file-like object, required) – The output stream

• timeout (float, optional) – The default timeout of the channel for
global connection. Default value is blocking (None).

The following code shows the use of an DebugChannel channel:

>>> from netzob.all import *
>>> client = DebugChannel("/dev/null")
>>> symbol = Symbol([Field("Hello everyone!")])
>>> with client:
... client.write(symbol.specialize())
18

2.4 Abstraction Layer

In the API, the component responsible for translating concrete messages into symbols, or for con-
verting symbols into concrete messages, is the AbstractionLayer.

Ref : Netzob API ©2017 AMOSSYS Page 73

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Test Platform: Language Specifications

class AbstractionLayer(channel, symbols, memory=None)
An abstraction layer specializes a symbol into a message before emitting it and, on the other
way, abstracts a received message into a symbol.

The AbstractionLayer constructor expects some parameters:

Parameters

• channel (AbstractChannel, required) – The underlying commu-
nication channel (such as IPChannel, UDPClient. . .).

• symbols (a list of Symbol, required) – The list of permitted sym-
bols during translation from/to concrete messages.

• memory (Memory, optional) – A memory used to store variable values
during specialization and abstraction of successive symbols, especially to
handle inter-symbol relationships. If None, a locale memory is created
by default and used internally.

The AbstractionLayer class provides the following public variables:

Variables

• channel (AbstractChannel) – The underlying communication
channel (such as IPChannel, UDPClient. . .).

• symbols (a list of Symbol) – The list of permitted symbols during
translation from/to concrete messages.

• memory (Memory) – A memory used to store variable values during
specialization and abstraction of successive symbols, especially to han-
dle inter-symbol relationships. If None, a locale memory is created by
default and used internally.

Usage example of the abstraction layer

The following code shows a usage of the abstraction layer class, where two UDP channels
(client and server) are built and transport just one permitted symbol:

>>> from netzob.all import *
>>> symbol = Symbol([Field(b"Hello Kurt !")], name = "Symbol_Hello")
>>> channelIn = UDPServer(localIP="127.0.0.1", localPort=8889, timeout=1.)
>>> abstractionLayerIn = AbstractionLayer(channelIn, [symbol])
>>> abstractionLayerIn.openChannel()
>>> channelOut = UDPClient(remoteIP="127.0.0.1", remotePort=8889, timeout=1.)
>>> abstractionLayerOut = AbstractionLayer(channelOut, [symbol])
>>> abstractionLayerOut.openChannel()
>>> abstractionLayerOut.writeSymbol(symbol)
12
>>> (received_symbol, received_data) = abstractionLayerIn.readSymbol()
>>> received_symbol.name
'Symbol_Hello'
>>> received_data
b'Hello Kurt !'

Handling message flow within the abstraction layer

Ref : Netzob API ©2017 AMOSSYS Page 74

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

Test Platform: Language Specifications

The following example demonstrates that the abstraction layer can also handle a message
flow:

>>> from netzob.all import *
>>> symbolflow = Symbol([Field(b"Hello Kurt !Whats up ?")], name = "Symbol Flow")
>>> symbol1 = Symbol([Field(b"Hello Kurt !")], name = "Symbol_Hello")
>>> symbol2 = Symbol([Field(b"Whats up ?")], name = "Symbol_WUP")
>>> channelIn = UDPServer(localIP="127.0.0.1", localPort=8889, timeout=1.)
>>> abstractionLayerIn = AbstractionLayer(channelIn, [symbol1, symbol2])
>>> abstractionLayerIn.openChannel()
>>> channelOut = UDPClient(remoteIP="127.0.0.1", remotePort=8889, timeout=1.)
>>> abstractionLayerOut = AbstractionLayer(channelOut, [symbolflow])
>>> abstractionLayerOut.openChannel()
>>> abstractionLayerOut.writeSymbol(symbolflow)
22
>>> (received_symbols, received_data) = abstractionLayerIn.readSymbols()
>>> received_symbols
[Symbol_Hello, Symbol_WUP]

Relationships between the environment and the produced messages

The following example shows how to define a relationship between a message to send and
an environment variable, then how to leverage this relationship when using the abstraction
layer.

>>> from netzob.all import *
>>> # Environment variables definition
>>> memory1 = Memory()
>>> env1 = Data(String(), name="env1")
>>> memory1.memorize(env1, String("John").value)
>>>
>>> # Symbol definition
>>> f7 = Field(domain=String("master"), name="F7")
>>> f8 = Field(domain=String(">"), name="F8")
>>> f9 = Field(domain=Value(env1), name="F9")
>>> symbol = Symbol(fields=[f7, f8, f9], name="Symbol_Hello")
>>>
>>> # Creation of channels with dedicated abstraction layer
>>> channelIn = UDPServer(localIP="127.0.0.1", localPort=8889, timeout=1.)
>>> abstractionLayerIn = AbstractionLayer(channelIn, [symbol], memory1)
>>> abstractionLayerIn.openChannel()
>>> channelOut = UDPClient(remoteIP="127.0.0.1", remotePort=8889, timeout=1.)
>>> abstractionLayerOut = AbstractionLayer(channelOut, [symbol], memory1)
>>> abstractionLayerOut.openChannel()
>>>
>>> # Sending of a symbol containing a data coming from the environment
>>> abstractionLayerOut.writeSymbol(symbol)
11
>>> (received_symbol, received_data) = abstractionLayerIn.readSymbol()
>>> received_symbol.name
'Symbol_Hello'
>>> received_data
b'master>John'

writeSymbol(symbol, rate=None, duration=None, presets=None, fuzz=None)
Write the specified symbol on the communication channel after specializing it into a
contextualized message.

Parameters

• symbol (Symbol, required) – The symbol to write on the channel.

Ref : Netzob API ©2017 AMOSSYS Page 75

Test Platform: Language Specifications

• rate (int, optional) – This specifies the bandwidth in octets to re-
spect during traffic emission (should be used with duration= parame-
ter). Default value is None (no rate).

• duration (int, optional) – This tells how much seconds the symbol
is continuously written on the channel. Default value is None (write
only once).

• presets (dict, optional) – This specifies how to parameterize the
emitted symbol. The expected content of this dict is specified in
Symbol.specialize.

• fuzz (Fuzz, optional) – A fuzzing configuration used during the
specialization process. Values in this configuration will override any
field definition, constraints, relationship dependencies or parameterized
fields. See Fuzz for a complete explanation of its use for fuzzing pur-
pose.

Raise TypeError if parameter is not valid and Exception if an exception
occurs.

readSymbols()
Read a flow from the abstraction layer and abstract it in one or more consecutive sym-
bols.

The timeout attribute of the underlying channel is important as it represents the amount
of time (in seconds) above which no reception of a message triggers the reception of
an EmptySymbol.

readSymbol()
Read a message from the abstraction layer and abstract it into a symbol.

The timeout attribute of the underlying channel is important as it represents the amount
of time (in seconds) above which no reception of a message triggers the reception of
an EmptySymbol.

openChannel()
Open the underlying communication channel.

closeChannel()
Close the underlying communication channel.

reset()
Reset the abstraction layer (i.e. its internal memory as well as the internal parsers).

Ref : Netzob API ©2017 AMOSSYS Page 76

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#TypeError

Test Platform: Language Specifications

Specific symbols are used in the abstraction layer to represent the absence of received symbol
(EmptySymbol) and the reception of an unknown symbol (UnknownSymbol). Those symbols are
described below.

class EmptySymbol
An empty symbol is a special type of symbol that represents the fact of having nothing
received or to have nothing to send. An EmptySymbol is only produced by the automata,
and thus should not be instanciated.

class UnknownSymbol(message=None)
An unknown symbol is a special type of symbol that is returned to represent a message that
cannot be abstracted.

The UnknownSymbol constructor expects some parameters:

Parameters message (netzob.Model.Vocabulary.Messages.
AbstractMessage.AbstractMessage, optional) – The raw message
that cannot be abstracted into a symbol.

The UnknownSymbol class provides the following public variable:

Variables message (netzob.Model.Vocabulary.Messages.
AbstractMessage.AbstractMessage) – The raw message that
cannot be abstracted into a symbol.

>>> from netzob.all import *
>>> u = UnknownSymbol()
>>> u.name
"Unknown message ''"

Ref : Netzob API ©2017 AMOSSYS Page 77

Test Platform: Language Specifications

2.5 Relationships between Messages and the Environ-
ment

This chapter covers the following requirements: 43, 45.

In the API, the capability to specify relationships between successive messages or between mes-
sages and the environment is provided by the Memory class.

Relationships between fields of successive messages

The following example shows how to define a relationship between a received message and the
next message to send:

>>> from netzob.all import *
>>> f1 = Field(domain=String("hello"), name="F1")
>>> f2 = Field(domain=String(";"), name="F2")
>>> f3 = Field(domain=String(nbChars=(5,10)), name="F3")
>>> s1 = Symbol(fields=[f1, f2, f3], name="S1")
>>>
>>> f4 = Field(domain=String("master"), name="F4")
>>> f5 = Field(domain=String(">"), name="F5")
>>> f6 = Field(domain=Value(f3), name="F6")
>>> s2 = Symbol(fields=[f4, f5, f6])
>>>
>>> memory = Memory()
>>> m1 = s1.specialize(memory=memory)
>>> m2 = s2.specialize(memory=memory)
>>>
>>> m1[6:] == m2[7:]
True

Relationships between a message field and the environment

The following example shows how to define a relationship between a message to send and an
environment variable:

>>> from netzob.all import *
>>> # Environment variables definition
>>> memory = Memory()
>>> env1 = Data(String(), name="env1")
>>> memory.memorize(env1, String("John").value)
>>>
>>> # Symbol definition
>>> f7 = Field(domain=String("master"), name="F7")
>>> f8 = Field(domain=String(">"), name="F8")
>>> f9 = Field(domain=Value(env1), name="F9")
>>> s3 = Symbol(fields=[f7, f8, f9])
>>>
>>> # Symbol specialization
>>> s3.specialize(memory=memory)
b'master>John'

Ref : Netzob API ©2017 AMOSSYS Page 78

	Format Message Modeling
	Format Message Modeling Concepts
	Definitions: Vocabulary, Symbol, Field, Variable
	Abstraction and Specialization of Symbols

	Modeling Data Types
	Data Types API
	Available Data Types
	Integer Type
	BLOB / Raw Type
	HexaString Type
	String Type
	BitArray Type
	IPv4 Type
	Timestamp Type

	Modeling Data Variables
	Modeling Fields
	Modeling Fields with Complex Structures
	Aggregate Domain
	Alternate Domain
	Repeat Domain

	Modeling Field Relationships
	Value Relationships
	Size Relationships
	Padding Relationships
	Checksum Relationships
	Hash Relationships
	HMAC Relationships

	Modeling Symbols
	Persistence during Specialization and Abstraction of Symbols

	Sending and Receiving Messages
	Underlying Concepts
	Communication Channel API
	Available Communication Channels
	RawEthernetChannel channel
	RawIPChannel channel
	IPChannel channel
	UDPClient channel
	TCPClient channel
	UDPServer channel
	TCPServer channel
	SSLClient channel
	DebugChannel channel

	Abstraction Layer
	Relationships between Messages and the Environment

